Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Let a and b be fixed real numbers such that a < b on a number line. The different types of intervals we have are
The open interval (a, b): We define an open interval (a, b) with end points a and b as a set of all real numbers "x", such that a < x < b. That is, the real number x will be taking all the values between a and b. An important point to consider in this case is the type of brackets used. Generally open intervals are denoted by ordinary brackets ( ). The closed interval [a, b]: We define a closed interval [a, b] with end points a and b as a set of all real numbers "x", such that a ≤ x ≤ b. In this case the real number x will be taking all the values between a and b inclusive of the end points a and b. Generally closed intervals are denoted by [ ] brackets. The half open interval [a, b): We define a half open interval [a, b) with end points a and b as a set of all real numbers "x", such that a ≤ x < b. In this case the real number x will be taking all the values between a and b, inclusive of only a but not b. The half open interval (a, b]: We define a half open interval (a, b] with end points a and b as a set of all real numbers "x", such that a < x ≤ b. In this case the real number x will be taking all the values between a and b, inclusive of only b but not a.
The open interval (a, b): We define an open interval (a, b) with end points a and b as a set of all real numbers "x", such that a < x < b. That is, the real number x will be taking all the values between a and b. An important point to consider in this case is the type of brackets used. Generally open intervals are denoted by ordinary brackets ( ).
The closed interval [a, b]: We define a closed interval [a, b] with end points a and b as a set of all real numbers "x", such that a ≤ x ≤ b. In this case the real number x will be taking all the values between a and b inclusive of the end points a and b. Generally closed intervals are denoted by [ ] brackets.
The half open interval [a, b): We define a half open interval [a, b) with end points a and b as a set of all real numbers "x", such that a ≤ x < b. In this case the real number x will be taking all the values between a and b, inclusive of only a but not b.
The half open interval (a, b]: We define a half open interval (a, b] with end points a and b as a set of all real numbers "x", such that a < x ≤ b. In this case the real number x will be taking all the values between a and b, inclusive of only b but not a.
Example: Find out which of the following equations functions are & which are not functions. y= 5x + 1 Solution The "working" definition of fu
Rates of Change or instantaneous rate of change ; Now we need to look at is the rate of change problem. It will turn out to be one of the most significant concepts . We will c
( a+2b)x + (2a - b)y = 2, (a - 2b)x + (2a +b)y = 3 (Ans: 5b - 2a/10ab , a + 10b/10ab ) Ans: 2ax + 4ay = y , we get 4bx - 2by = -1 2ax+ 4ay = 5 4bx- 2by = - 1
Polynomials in two variables Let's take a look at polynomials in two variables. Polynomials in two variables are algebraic expressions containing terms in the form ax n y m
Kelli calls her grandmother every month Kelli also calls her cousin.If Kelli calls her cousin in January, how many calls will Kelli have made to her grandmother and her cousin by t
Consider the task of identifying a 1 cm thick breast cancer that is embedded inside a 4.2 cm thick fibroglandular breast as depicted in Fig. The cancerous tumor has a cross
Explain Mixed Numbers with examples? Everybody loves a bargain, right? But sometimes these "special deals" aren't what they seem to be. For example, pretend you were at a
Solve the equation for x and check each solution. 2/(x+3) -3/(4-x) = 2x-2/(x 2 -x-12)
cot functions
Objectives After going through this unit, you should be able to 1. explain the processes involved ih addition and subtraction; 2. plan and execute activities that woul
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd