Basic indefinite integrals- computing indefinite integrals, Mathematics

Assignment Help:

Basic indefinite integrals

The first integral which we'll look at is the integral of a power of x.

                               ∫xn dx = (xn +1 / n + 1)+ c,          n ≠ -1

The general rule while integrating a power of x we add one onto the exponent & then divide through the new exponent. It is clear that we will have to avoid n = -1 in this formula.  If we let n = -1 in this formula we will end up with division by zero.  We will make sure of this case in a bit.

Next is one of the simple integrals however always seems to cause problems for people.

                                      ∫ k dx = kx + c,         c & k are constants

All we're asking is what we differentiated to obtain the integrand it is pretty simple, but it does appear to cause problems on occasion.

Now let's take a look at the trig functions.

∫ sin x dx = - cos x + c              ∫ cos x dx = sin x + c

∫ sec2 x dx = tan x + c                      ∫ sec x tan x dx = sec x + c

∫ csc2 x dx = - cot x + c               ∫ csc x cot x dx = - csc x + c

2479_integeral.png

Notice as well that we just integrated two of the six trig functions here. The remaining four integrals are actually integrals which give the remaining four trig functions.  Also, be careful with signs here.  This is easy to obtain the signs for derivatives & integrals mixed up.  Again, we're asking what function we differentiated to obtain the integrand.

Now, let's take care of exponential & logarithm functions.

∫ex dx = ex + c              ∫a x dx = ( ax    /lna )+  c            ( (1/x) dx = ∫x-1 dx = ln |x |+ c

At last, let's take care of the inverse trig & hyperbolic functions.

(1/(x2+1) dx = tan -1 x + c     

∫ sinh x dx = cosh x + c                                  ∫ cosh x dx = sinh x +c

∫ sech 2 x dx = tanh x + c                              ∫ sech x tanh x dx = - sech x + c

∫ csch 2 x dx = - coth x + c                            ∫ csch x coth x dx = - csch x + c

All we are asking here is what function we differentiated to obtain the integrand the second integral could also be,

251_integrals.png

Usually we utilize the first form of this integral.

Now that we've got mostly basic integrals out of the way let's do some indefinite integrals. In all these problems remember that we can always verify our answer by differentiating and ensuring that we get the integrand.


Related Discussions:- Basic indefinite integrals- computing indefinite integrals

Equal groupings -categories of multiplication, Equal groupings - when we...

Equal groupings - when we want to find how many objects there are in several equal-sized sets. (e.g., if there are 3 baskets, each with 4 bananas, 4 oranges and 4 apples, respec

Tests for relative minimum, Tests for relative minimum For a relative ...

Tests for relative minimum For a relative minimum point there are two tests: i.The first derivative, which is (dy)/(dx)  = f´(x) = 0 ii.The second derivative, which i

Hydrostatic pressure and force - applications of integrals, Hydrostatic Pre...

Hydrostatic Pressure and Force - Applications of integrals In this part we are going to submerge a vertical plate in water and we wish to know the force that is exerted on t

Solve the form ax2 - bx - c factoring polynomials, Solve the form ax 2 - b...

Solve the form ax 2 - bx - c factoring polynomials ? This tutorial will help you factor quadratics that look something like this: 2x 2 -3x - 14 (Leading coefficient is

Evaluate following unit circle, Evaluate following sin 2 ?/3   and sin (-2 ...

Evaluate following sin 2 ?/3   and sin (-2 ?/3) Solution: The first evaluation in this part uses the angle 2 ?/3.  It is not on our unit circle above, though notice that  2 ?/

Algebra, If a^n+1 + b^n+1/a^n + b^n is the arithmetic mean of a and b then ...

If a^n+1 + b^n+1/a^n + b^n is the arithmetic mean of a and b then find n. Answer:Arithmatic mean of a,b is =(a+b)/2  from the problem (a+b)/2=(a^n+1 +b ^n+1)/(a^n+b^n)  then (a+

Use mathematical induction and prove equation, 1. Use mathematical inductio...

1. Use mathematical induction to prove whenever n is a positive integer. 2. Use loop invariant to prove that the program for computing the sum of 1,...,n is correct.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd