Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The mathematical relationships of control systems are usually represented by block diagrams, which show the role of various components of the system and the interaction of variables in it.
It is common to use a block diagram in which each component in the system (or sometimes a group of components) is represented by a block. An entire systemmay, then, be represented by the interconnection of the blocks of the individual elements, so that their contributions to the overall performance of the system may be evaluated. The simple configuration shown in Figure is actually the basic building block of a complex block diagram. In the case of linear systems, the input-output relationship is expressed as a transfer function, wahich is the ratio of the Laplace transform of the output to the Laplace transform of the input with initial conditions of the system set to zero. The arrows on the diagram imply that the block diagram has a unilateral property. In other words, signal can only pass in the direction of the arrows.
A box is the symbol for multiplication; the input quantity is multiplied by the function in the box to obtain the output.With circles indicating summing points (in an algebraic sense) and with boxes or blocks denoting multiplication, any linear mathematical expression may be represented by block-diagram notation, as in Figure for the case of an elementary feedback control system.
The block diagrams of complex feedback control systems usually contain several feedback loops, and they may have to be simplified in order to evaluate an overall transfer function for the system. A few of the block diagram reduction manipulations are given in Table 3.4.1; no attempt is made here to cover all the possibilities.
discuss the generator action in a dc motor
what are the disadvantages of superposition theorem?
Prepare a User Requirement Specification for the monitor and alarm system. User Requirements Specification should be written in a clear and unambiguous manner to state: • The
Q. Consider a 240-V supply feeding a resistive load of 10 kW through wires having a total resistance of R = 0.02 . For the same load, let a 120-V supply be used with a total wire
EXplain About R-2-R Ladder D/A Convertor
Q. How does a MOSFET amplify electrical signals? While a minimum requirement for amplification of electrical signals is power gain, one finds that a device with both voltage an
a) Write down a short note on compensators. b) Classify filter with relevant sketches. c) Illustrate the principle and working of Analog to Digital converter.
The synchronous speed of a wound-rotor induction motor is 900 r/min. Under a blocked-rotor condition, the input power to the motor is 45 kW at 193.6 A. The stator resistance per ph
Normalizing
The French scientist, Ampere, (1775- 1836), conducted a series of experiments on the force between current carrying conductors. He found that: force per metre of wire (
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd