Amperes circuital law, Electrical Engineering

Assignment Help:

Amperes Circuital Law

The    observation    that    magnetic    field strength varied with distance from the wire led to the following statement:

'If  the  magnetic  field  H  is  integrated along a closed path, the result is equal to the current enclosed'.

This is the basis with which we can relate the strength of a magnetic field to the current producing it. It is an extremely important statement. Note that only the component of H that lies along the path is to be considered, so the Law may be stated mathematically as:


∫ H     dl     ∑ I


where the  vector  dot  product  is used  (= H.dl.cos  ).  Note that  both H  and  dl are vectors.  The  direction  of  H  around  a current carrying conductor is given by the 'right hand corkscrew rule' , attributed to Maxwell.Ampere's  Circuital  Law  applies  for  any path chosen for the integration. If the chosen path does not enclose any current, the result of the integration will be zero.

To apply this law to the case of a long, thin current carrying conductor, it is convenient to choose a circular path of constant radius centred on the wire. Since any path could be chosen, the circular path is chosen simply to make the integration easy, H being  both constant  and  tangential  for  a given radius from the wire.

Hence

∫ H     dl     ∑ I

H.2  r = I
 
H  = I/2  r


For I1  = I2  =1 amp and r = 1 metre, the force/metre   in  a   vacuum  =   2   x  10-7
Newtons   by  definition  of  the  ampere. Hence    =    0 = 4   x 10-7

Had Ampere been able to conduct his experiments involving the force between current carrying conductors in materials other than air, he would have found that the material involved also affected the force. This can be taken into account by introducing a property called the 'relative magnetic permeability' of a material and is given the symbol   r.

 

Different materials have different values of . These are related to that for a vacuum (or   for practical  purposes, air)  by introducing  the   concept  of         relative permeability  r  which expresses  for the material relative to that for a vacuum, i.e.

=   0   r.

 

Finally, the quantity .H is defined as the flux density B (i.e. the number of flux lines/m2) so the flux density B is:

B  =    0   rH

so    the    force    on    a    current    carrying conductor in a magnetic field H  may be expressed in terms of the resulting flux density to be:

 

force/metre = B. I2

or

force = B.I.L

 

1.    when  we  draw  flux  lines  on  a diagram, the density of those lines (number/m2)  depicts  the  product 0   rH rather than just H.

2.  flux lines are always continuous.They do not start or stop in space -.i.e. they are always loops, even though they may not always be shown as such in some diagrams

 

 

 


Related Discussions:- Amperes circuital law

Matrix converters, i need tutor for teaching me matrix converter based upfc...

i need tutor for teaching me matrix converter based upfc modelling and building using matlab

Electrical Engineering Design Report, hi there i just need help for Electri...

hi there i just need help for Electrical Engineering Design Report about any topic (prefer charger and inverter) which should be include Summary,Table of contents,Introduction,Body

DC. motors, what''s the difference between DC. motors and AC. motors

what''s the difference between DC. motors and AC. motors

Calculate the pay back of the project, Problem: Jyoti Textile is consid...

Problem: Jyoti Textile is considering whether to add a new product to its range. Machinery costing $280,000 would have to be bought at the start of the project (Year 0). The pr

Use ideal op-amp technique to find voltage at point, Q. In the circuit show...

Q. In the circuit shown in Figure, use the ideal op-amp technique to find: (a) v o as a function of v i . (b) The voltage at A.

Determine the total energy loss, Determine the total energy loss: Two ...

Determine the total energy loss: Two capacitors C 1 = 50 μF and C 2 = 100 μF are connected in parallel across 250 V supply. Determine the total energy loss. Figure

Clipper, application and demerits

application and demerits

What is balanced discriminator, Q. What is balanced discriminator? A ba...

Q. What is balanced discriminator? A balanced discriminator with the corresponding frequency characteristics is depicted in Figure. The rising half of the frequency characteris

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd