Amperes circuital law, Electrical Engineering

Assignment Help:

Amperes Circuital Law

The    observation    that    magnetic    field strength varied with distance from the wire led to the following statement:

'If  the  magnetic  field  H  is  integrated along a closed path, the result is equal to the current enclosed'.

This is the basis with which we can relate the strength of a magnetic field to the current producing it. It is an extremely important statement. Note that only the component of H that lies along the path is to be considered, so the Law may be stated mathematically as:


∫ H     dl     ∑ I


where the  vector  dot  product  is used  (= H.dl.cos  ).  Note that  both H  and  dl are vectors.  The  direction  of  H  around  a current carrying conductor is given by the 'right hand corkscrew rule' , attributed to Maxwell.Ampere's  Circuital  Law  applies  for  any path chosen for the integration. If the chosen path does not enclose any current, the result of the integration will be zero.

To apply this law to the case of a long, thin current carrying conductor, it is convenient to choose a circular path of constant radius centred on the wire. Since any path could be chosen, the circular path is chosen simply to make the integration easy, H being  both constant  and  tangential  for  a given radius from the wire.

Hence

∫ H     dl     ∑ I

H.2  r = I
 
H  = I/2  r


For I1  = I2  =1 amp and r = 1 metre, the force/metre   in  a   vacuum  =   2   x  10-7
Newtons   by  definition  of  the  ampere. Hence    =    0 = 4   x 10-7

Had Ampere been able to conduct his experiments involving the force between current carrying conductors in materials other than air, he would have found that the material involved also affected the force. This can be taken into account by introducing a property called the 'relative magnetic permeability' of a material and is given the symbol   r.

 

Different materials have different values of . These are related to that for a vacuum (or   for practical  purposes, air)  by introducing  the   concept  of         relative permeability  r  which expresses  for the material relative to that for a vacuum, i.e.

=   0   r.

 

Finally, the quantity .H is defined as the flux density B (i.e. the number of flux lines/m2) so the flux density B is:

B  =    0   rH

so    the    force    on    a    current    carrying conductor in a magnetic field H  may be expressed in terms of the resulting flux density to be:

 

force/metre = B. I2

or

force = B.I.L

 

1.    when  we  draw  flux  lines  on  a diagram, the density of those lines (number/m2)  depicts  the  product 0   rH rather than just H.

2.  flux lines are always continuous.They do not start or stop in space -.i.e. they are always loops, even though they may not always be shown as such in some diagrams

 

 

 


Related Discussions:- Amperes circuital law

Khalid, i need to rewrite 24 pages of engineering research.

i need to rewrite 24 pages of engineering research.

Transistors, what is transistor how it works?

what is transistor how it works?

Describe what is rim and sim instructions, RIM is Read Interrupt Mask. Used...

RIM is Read Interrupt Mask. Used to ensure whether the interrupt is Masked or not.     SIM is Set Interrupt Mask. Used to mask the hardware interrupts.

Find dispersion relation for free electron, Find Dispersion Relation for Fr...

Find Dispersion Relation for Free Electron Question: Find the dispersion relation for a free electron, and, thus, observe the relation between its rest mass and effective ma

Engineering Science, A rifle with a mass of 3,5 kg fires a bullei with a ma...

A rifle with a mass of 3,5 kg fires a bullei with a mass of 120 g with a muzzle velocity of 420 mls. Calculate the following: 1.4.''l The momentum before the rifle was fired ''1.4.

Cmc complement carry instruction , CMC Complement Carry Instruction Th...

CMC Complement Carry Instruction This instruction complements  the carry  flag i .e   if the carry flag  is 1 before the execution of this  instruction it will be reset and if

atex equipment, I have an enclosure which doesnt comply with the atex dire...

I have an enclosure which doesnt comply with the atex directive, they want to install it in outside in a safe area of an offshore platform. They have produced an atex cert and want

Estimate hortons infiltration equation , Show that the infiltration volume ...

Show that the infiltration volume estimated using Horton's infiltration equation between times t1 and t2 is given by; F =f c (t 2 -t 1 )+(f 1 -f c )(1-e -k(t2-t1) )/k Use the

Find the average power absorbed by each element, Q. Let v(t) = Vmax cos ωt ...

Q. Let v(t) = Vmax cos ωt be applied to (a) a pure resistor, (b) a pure capacitor (with zero initial capacitor voltage, and (c) a pure inductor (with zero initial inductor current)

Electric machinery fundamentals, Ask qu1. If the resistor Radj is adjusted ...

Ask qu1. If the resistor Radj is adjusted to 175O what is the rotational speed of the motor at no-load conditions? 2. Assuming no armature reaction, what is the speed of the motor

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd