All pairs shortest paths algorithm, Data Structure & Algorithms

Assignment Help:

In the last section, we discussed regarding shortest path algorithm that starts with a single source and determines shortest path to all vertices in the graph. In this section, we will discuss the problem of finding shortest path among all pairs of vertices in a graph. This problem is helpful in finding distance among all pairs of cities in a road atlas. All pairs shortest paths problem is mother of all of the shortest paths problems.

In this algorithm, we shall represent the graph through adjacency matrix.

The weight of an edge Cij in an adjacency matrix representation of any directed graph is represented as follows

1625_All Pairs Shortest Paths Algorithm.png

Given directed graph G = (V, E), where each edge (v, w) contain a non-negative cost C(v , w), for all of the pairs of vertices (v, w) to determine the lowest cost path from v to w.

The All pairs shortest paths problem can be considered as a generalisation of single- source-shortest-path problem, using Dijkstra's algorithm by varying the source node amongst all the nodes in the graph. If negative edge(s) is allowed, then we can't employ Dijkstra's algorithm.

In this segment we will employ a recursive solution to all pair shortest paths problem known as Floyd-Warshall algorithm, which runs in O(n3) time.

This algorithm is depends on the following principle. For graph G let V = {1, 2,3,...,n}.Let us assume a sub set of the vertices {1, 2, 3, .....,k. For any pair of vertices which belong to V, assume all paths from i to j whose intermediate vertices are from {1, 2, 3, ....k}. This algorithm will exploit the relationship among path p and shortest path from i to j whose intermediate vertices are from {1, 2, 3, ....k-1} with the given two possibilities:

1.   If k is not any intermediate vertex in the path p, then all of the intermediate vertices of the path p are in {1, 2, 3, ....,k-1}. Therefore, shortest path from i to j along intermediate vertices in {1, 2, 3, ....,k-1} is also the shortest path from i to j along vertices in {1, 2, 3, ..., k}.

2.   If k is intermediate vertex of the path p, we break down the path p in path p1 from vertex i to k and path p2 from vertex k to j. So, path p1 is the shortest path from i to k  along with intermediate vertices in {1, 2, 3, ...,k-1}.

Throughout iteration process we determine the shortest path from i to j using only vertices (1, 2,3, ..., k-1} and in the next step, we determine the cost of using the kth vertex as an intermediate step. If this results into lower cost, then we store it.

After n iterations (all possible iterations), we determine the lowest cost path from i to j by using all vertices (if essential).

Notice the following:

Initialize the matrix

 C[i][ j] = ∞ if (i, j) does not associate with E for graph G = (V, E)

 Initially, D[i][j] = C[i][j]

We also term a path matrix P where P[i][j] holds intermediate vertex k on the least cost path from i to j which leads to the shortest path from i to j .


Related Discussions:- All pairs shortest paths algorithm

Insertion of element into a linked list, ALGORITHM (Insertion of element in...

ALGORITHM (Insertion of element into a linked list) Step 1 Begin the program Step 2 if the list is empty or any new element comes before the start (head) element, then add t

Representation of arrays, REPRESENTATION OF ARRAYS This is not uncommon...

REPRESENTATION OF ARRAYS This is not uncommon to determine a large number of programs which procedure the elements of an array in sequence. However, does it mean that the eleme

Tower of hanoi problem., Write an algorithm for getting solution to the Tow...

Write an algorithm for getting solution to the Tower's of Hanoi problem. Explain the working of your algorithm (with 4 disks) with appropriate diagrams. Ans: void Hanoi(int

Binry trees, Build a class ?Node?. It should have a ?value? that it stores ...

Build a class ?Node?. It should have a ?value? that it stores and also links to its parent and children (if they exist). Build getters and setters for it (e.g. parent node, child n

Merging 4 sorted files containing 50, Merging 4 sorted files having 50, 10,...

Merging 4 sorted files having 50, 10, 25 and 15 records will take time  O (100)

Recursive implementation of binary tree traversals, There are three typical...

There are three typical ways of recursively traversing a binary tree. In each of these, the left sub-trees & right sub-trees are visited recursively and the distinguishing feature

Explain the halting problem, Explain the halting problem Given a comput...

Explain the halting problem Given a computer program and an input to it, verify whether the program will halt on that input or continue working indefinitely on it.

Data type, Q. Define the terms data type and abstract data type. Comment up...

Q. Define the terms data type and abstract data type. Comment upon the significance of both these.   Ans: We determine the total amount of memory to reserve by determining

Queues, what is queues? how it work? and why it used? i want an assignment...

what is queues? how it work? and why it used? i want an assignment on queue .....

Time complexity, how to learn about time complexity of a particular algorit...

how to learn about time complexity of a particular algorithm

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd