All pairs shortest paths algorithm, Data Structure & Algorithms

Assignment Help:

In the last section, we discussed regarding shortest path algorithm that starts with a single source and determines shortest path to all vertices in the graph. In this section, we will discuss the problem of finding shortest path among all pairs of vertices in a graph. This problem is helpful in finding distance among all pairs of cities in a road atlas. All pairs shortest paths problem is mother of all of the shortest paths problems.

In this algorithm, we shall represent the graph through adjacency matrix.

The weight of an edge Cij in an adjacency matrix representation of any directed graph is represented as follows

1625_All Pairs Shortest Paths Algorithm.png

Given directed graph G = (V, E), where each edge (v, w) contain a non-negative cost C(v , w), for all of the pairs of vertices (v, w) to determine the lowest cost path from v to w.

The All pairs shortest paths problem can be considered as a generalisation of single- source-shortest-path problem, using Dijkstra's algorithm by varying the source node amongst all the nodes in the graph. If negative edge(s) is allowed, then we can't employ Dijkstra's algorithm.

In this segment we will employ a recursive solution to all pair shortest paths problem known as Floyd-Warshall algorithm, which runs in O(n3) time.

This algorithm is depends on the following principle. For graph G let V = {1, 2,3,...,n}.Let us assume a sub set of the vertices {1, 2, 3, .....,k. For any pair of vertices which belong to V, assume all paths from i to j whose intermediate vertices are from {1, 2, 3, ....k}. This algorithm will exploit the relationship among path p and shortest path from i to j whose intermediate vertices are from {1, 2, 3, ....k-1} with the given two possibilities:

1.   If k is not any intermediate vertex in the path p, then all of the intermediate vertices of the path p are in {1, 2, 3, ....,k-1}. Therefore, shortest path from i to j along intermediate vertices in {1, 2, 3, ....,k-1} is also the shortest path from i to j along vertices in {1, 2, 3, ..., k}.

2.   If k is intermediate vertex of the path p, we break down the path p in path p1 from vertex i to k and path p2 from vertex k to j. So, path p1 is the shortest path from i to k  along with intermediate vertices in {1, 2, 3, ...,k-1}.

Throughout iteration process we determine the shortest path from i to j using only vertices (1, 2,3, ..., k-1} and in the next step, we determine the cost of using the kth vertex as an intermediate step. If this results into lower cost, then we store it.

After n iterations (all possible iterations), we determine the lowest cost path from i to j by using all vertices (if essential).

Notice the following:

Initialize the matrix

 C[i][ j] = ∞ if (i, j) does not associate with E for graph G = (V, E)

 Initially, D[i][j] = C[i][j]

We also term a path matrix P where P[i][j] holds intermediate vertex k on the least cost path from i to j which leads to the shortest path from i to j .


Related Discussions:- All pairs shortest paths algorithm

What do you mean by hash clash, What do you mean by hash clash? Hashing...

What do you mean by hash clash? Hashing is not perfect. Occasionally, a collision occurs when two different keys hash into the same hash value and are assigned to the same arra

Explain what is stack. describe ways to execute stack. , ST AC K is ...

ST AC K is explained as follows : A stack is one of the most usually used data structure. A stack is also called a Last-In-First-Out (LIFO) system, is a linear list in

Hash function, Q. Define the graph, adjacency matrix, adjacency list, hash ...

Q. Define the graph, adjacency matrix, adjacency list, hash function, adjacency matrix, sparse matrix, reachability matrix.

Reverse order of elements on a slack, Q. Describe the representations of gr...

Q. Describe the representations of graph. Represent the graph which is given to us using any two methods Ans: The different ways by which we can represent graphs are:

What is a binary search tree (bst), What is a Binary Search Tree (BST)? ...

What is a Binary Search Tree (BST)? A binary search tree B is a binary tree every node of which satisfies the three conditions: 1.  The value of the left-subtree of 'x' is le

Binary tree creation, Binary tree creation struct NODE { struct N...

Binary tree creation struct NODE { struct NODE *left; int value; struct NODE *right; }; create_tree( struct NODE *curr, struct NODE *new ) { if(new->val

Non-recursive implementation of binary tree traversals, As we have seen, as...

As we have seen, as the traversal mechanisms were intrinsically recursive, the implementation was also easy through a recursive procedure. Though, in the case of a non-recursive me

Time complexity, Run time complexity of an algorithm is depend on

Run time complexity of an algorithm is depend on

Prefix and Postfix Expressions, Q.   Draw the expression tree of the infix ...

Q.   Draw the expression tree of the infix expression written below and then  convert it intoPrefix and Postfix expressions. ((a + b) + c * (d + e) + f )* (g + h )

Examination, Write an algorithm for binary search. What are its limitations...

Write an algorithm for binary search. What are its limitations? .

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd