Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

State about the pre- and post conditions, State about the pre- and post con...

State about the pre- and post conditions Programmers can easily document other pre- and post conditions and class invariants, though, and insert code to check most value preco

Create a function to show data structure, Given a number that is represente...

Given a number that is represented in your data structure, you will need a function that prints it out in base 215 in such a way that its contents can be checked for correctness. Y

Deletion of any element from the circular queue, Algorithm for deletion of ...

Algorithm for deletion of any element from the circular queue: Step-1: If queue is empty then say "queue is empty" & quit; else continue Step-2: Delete the "front" element

Merge sort, Merge sort is a sorting algorithm which uses the basic idea of ...

Merge sort is a sorting algorithm which uses the basic idea of divide and conquers. This algorithm initially divides the array into two halves, sorts them separately and then merge

Total impedent of the circuit, an electrical student designed a circuit in...

an electrical student designed a circuit in which the impedence in one part of a series circuit is 2+j8 ohms and the impedent is another part of the circuit is 4-j60 ohm mm program

Omega notation, The ?-Notation (Lower Bound) This notation provides a l...

The ?-Notation (Lower Bound) This notation provides a lower bound for a function to within a constant factor. We write f(n) = ?(g(n)), if there are positive constants n 0 and

Kruskal algorithm for minimum spanning, Implementations of Kruskal's algori...

Implementations of Kruskal's algorithm for Minimum Spanning Tree. You are implementing Kruskal's algorithm here. Please implement the array-based Union-Find data structure.

Programs, Develop a program that accepts the car registration( hint: LEA 43...

Develop a program that accepts the car registration( hint: LEA 43242010)

Procedure to delete all terminal nodes of the tree, Q. Let a binary tree 'T...

Q. Let a binary tree 'T' be in memory. Write a procedure to delete all terminal nodes of the tree.       A n s . fun ction to Delete Terminal Nodes from Binary Tree

Sorting on several keys, Thus far, we have been considering sorting depend ...

Thus far, we have been considering sorting depend on single keys. However, in real life applications, we may desire to sort the data on several keys. The simplest instance is that

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd