Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Postorder traversal of a binary tree, Postorder traversal of a binary tree ...

Postorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; }; postorder(struct NODE

Define game trees, Game trees An interesting application of trees is th...

Game trees An interesting application of trees is the playing of games such as tie-tac-toe, chess, nim, kalam, chess, go etc. We can picture the sequence of possible moves by m

Illustrate an example of algorithm, Illustrate an example of algorithm ...

Illustrate an example of algorithm Consider that an algorithm is a sequence of steps, not a program. You might use the same algorithm in different programs, or express same alg

Define tractable and intractable problems, Define tractable and intractable...

Define tractable and intractable problems Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are

Algorithms, b) The user will roll two (six-sided) dices and the user will l...

b) The user will roll two (six-sided) dices and the user will lose the game if (s)he gets a value 1 on either any of the two dices & wins otherwise. Display a message to the user w

Draw trace table and determine output of number, Draw trace table and deter...

Draw trace table and determine output from the following flowchart using following data: Number = 45, -2, 20.5

Explain worst fit method, Worst Fit method:- In this method the system alw...

Worst Fit method:- In this method the system always allocate a portion of the largest free block in memory. The philosophy behind this method is that by using small number of a ve

Calculation of storage complexity, Since memory is becoming more & cheaper,...

Since memory is becoming more & cheaper, the prominence of runtime complexity is enhancing. However, it is very much significant to analyses the amount of memory utilized by a prog

Financial index data analysis, need c++ algorithmic software program to der...

need c++ algorithmic software program to derive one numerical outcome from 10 levels of variables with 135 combinations cross computed

Explain arrays, Arrays :- To execute a stack we need a variable called top,...

Arrays :- To execute a stack we need a variable called top, that holds the index of the top element of stack and an array to hold the part of the stack.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd