Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Linked List Variations, Part1: Deque and Bag Implementation First, complet...

Part1: Deque and Bag Implementation First, complete the Linked List Implementation of the Deque (as in Worksheet 19) and Bag ADTs (Worksheet 22). Files Needed: linkedList.c Linke

Acyclic graphs, Acyclic Graphs In a directed graph a path is said to fo...

Acyclic Graphs In a directed graph a path is said to form a cycle is there exists a path (A,B,C,.....P) such that A = P. A graph is called acyclic graph if there is no cycle in

Explain about franklin algorithm, Explain about Franklin Algorithm We m...

Explain about Franklin Algorithm We mentioned how the number of possible comparisons of polygons grows as the square of the number of polygons in the scene. Many of the hidden-

What are the properties of colour, Properties of colour Colour descript...

Properties of colour Colour descriptions and specifications generally include three properties: hue; saturation and brightness. Hue associates a colour with some position in th

Arrays, This unit discussed about data structure called Arrays. The easiest...

This unit discussed about data structure called Arrays. The easiest form of array is a one-dimensional array which may be described as a finite ordered set of homogeneous elements

Search engines - applications of linear and binary search, Search engines e...

Search engines employ software robots to survey the Web & build their databases. Web documents retrieved & indexed through keywords. While you enter a query at search engine websit

Proof, prove that n/100=omega(n)

prove that n/100=omega(n)

Diophantine Equations, Implement algorithm to solve 5-1 fifth order equati...

Implement algorithm to solve 5-1 fifth order equation given.

Sorting, Retrieval of information is made simpler when it is stored into so...

Retrieval of information is made simpler when it is stored into some predefined order. Therefore, Sorting is a very important computer application activity. Several sorting algorit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd