Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

The smallest element of an array''s index, The smallest element of an array...

The smallest element of an array's index is called its Lower bound.

Explain state space tree, Explain State Space Tree If it is convenient ...

Explain State Space Tree If it is convenient to execute backtracking by constructing a tree of choices being made, the tree is known as a state space tree. Its root indicates a

State the ruby programming language, The Ruby Programming Language Alth...

The Ruby Programming Language Although data structures and algorithms we study aren't tied to any program or programming language, we need to write particular programs in speci

Graph, explain the prims''s algorithm with suitable example?

explain the prims''s algorithm with suitable example?

Efficient algorithms.., implementation of fast fourier transforms for non p...

implementation of fast fourier transforms for non power of 2

Finite automata, find the grammar of regular expression of (a/?)(a/b)?

find the grammar of regular expression of (a/?)(a/b)?

Which of the sorting algorithm is stable, Which of the sorting algorithm is...

Which of the sorting algorithm is stable   Heap sorting is stable.

Prime''z algorithem, Ask question #explain it beriflyMinimum 100 words acce...

Ask question #explain it beriflyMinimum 100 words accepted#

Variable length codes, Variable length codes (Niveau I) Code the following ...

Variable length codes (Niveau I) Code the following sequence of integers (2, 4, 2, 8, 3, 1, 4, 5, 13, 2) with • unary codes • ? codes • d codes • Rice codes (for a suitable l) and

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd