Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

linear-expected-time algorithm, Implement a linear-expected-time algorithm...

Implement a linear-expected-time algorithm for selecting the k th smallest element Algorithm description 1. If |S| = 1, then k = 1 and return the element in S as the an

Complexity of an algorithm, Q. Explain the complexity of an algorithm?  Wha...

Q. Explain the complexity of an algorithm?  What are the worst case analysis and best case analysis explain with an example.

Tradeoff between space and time complexity, We might sometimes seek a trade...

We might sometimes seek a tradeoff among space & time complexity. For instance, we may have to select a data structure which requires a lot of storage to reduce the computation tim

Find the adjacency matrix, Consider the digraph G with three vertices P1,P2...

Consider the digraph G with three vertices P1,P2 and P3 and four directed edges, one each from P1 to P2, P1 to P3, P2 to P3 and P3 to P1. a. Sketch the digraph. b. Find the a

Types of tree ?, Binary: Each node has one, zero, or two children. This ...

Binary: Each node has one, zero, or two children. This assertion creates many tree operations efficient and simple. Binary Search : A binary tree where each and every left

Encryption the plain-text using the round keys, Encryption the plain-text u...

Encryption the plain-text using the round keys: 1. (Key schedule) Implement an algorithm that will take a 128 bit key and generate the round keys for the AES encryption/decryp

Tree Traversal, If preorder traversal and post order traversal is given the...

If preorder traversal and post order traversal is given then how to calculate the pre order traversal. Please illustrate step by step process

Applications, Arrays are simple, however reliable to employ in more conditi...

Arrays are simple, however reliable to employ in more condition than you can count. Arrays are utilized in those problems while the number of items to be solved out is fixed. They

Write stream analogues of list processing functions, (a) Write (delay ) as...

(a) Write (delay ) as a special form for (lambda () ) and (force ), as discussed in class. (b) Write (stream-cons x y) as a special form, as discussed in class. (c) Write

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd