Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Substitution Rule
Mostly integrals are fairly simple and most of the substitutions are quite simple. The problems arise in correctly getting the integral set up for the substitution(s) to be done. Once you illustrate how these are done it's simple to see what you ought to do, however the first time through these can cause problems if you aren't on the lookout for potential problems.
Example Evaluate following integrals.
∫ e2t + sec ( 2t ) tan ( 2t ) dt
Solution
This integral contains two terms in it and both will need the similar substitution. This means that we ought not to do anything special to the integral. One of the more common "mistakes" here is to break the integral and carry out a separate substitution on each of the part. It isn't really mistake although will definitely enhance the amount of work we'll have to do. Therefore, since both terms in the integral utilizes the similar substitution we'll just do everything like a single integral by using the following substitution.
u = 2t du = 2dt⇒ dt = 1/2 du
Then the integral is,
∫ e2t + sec ( 2t ) tan ( 2t) dt = 1/2 ∫ eu + sec (u ) tan (u ) du
= 1 /2(eu + sec (u ))+ c
= 1/2 (e2t + sec ( 2t )) + c
Frequently a substitution can be utilized multiple times in an integral thus don't get excited about that if it happens. Also note as well that since there was a ½ in front of the whole integral there have to be a 1 /2 also in front of the answer from the integral.
What lines are invariant under the transformation [(103)(01-4)(001)]? I do not know where to even begin to solve this. Please help!!
Interval of Convergence After that secondly, the interval of all x's, involving the endpoints if need be, for which the power series converges is termed as the interval of conv
Easy Rider taxi service charges a pick-up fee of $2 and $1.25 for each mile. Luxury Limo taxi service charges a pick-up fee of $3.25 and $1 per mile. How many miles required to be
what are reason inside a circle?
Binomial Mathematical Properties 1. The expected or mean value = n × p = np Whereas; n = Sample Size p = Probability of success 2. The variance = npq Whereas; q =
Extreme Value Theorem : Assume that f ( x ) is continuous on the interval [a,b] then there are two numbers a ≤ c, d ≤ b so that f (c ) is an absolute maximum for the function and
on which date of the week does 4th december 2001 falls?
Recognizes the absolute extrema & relative extrema for the given function. f ( x ) = x 2 on [-2, 2] Solution Following is the graph for this fun
Grimm plc (Grimm) has the following transactions: a) On 1 st January 2010, Grimm issued 400,000 convertible £1 6% debentures for £600,000. The professional fees associated wit
8+2=
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd