Additionally functions in substitution rule, Mathematics

Assignment Help:

Substitution Rule

Mostly integrals are fairly simple and most of the substitutions are quite simple. The problems arise in correctly getting the integral set up for the substitution(s) to be done.  Once you illustrate how these are done it's simple to see what you ought to do, however the first time through these can cause problems if you aren't on the lookout for potential problems.

Example Evaluate following integrals.

      ∫ e2t  + sec ( 2t ) tan ( 2t ) dt

Solution

This integral contains two terms in it and both will need the similar substitution. This means that we ought not to do anything special to the integral. One of the more common "mistakes" here is to break the integral and carry out a separate substitution on each of the part. It isn't really mistake although will definitely enhance the amount of work we'll have to do.  Therefore, since both terms in the integral utilizes the similar substitution we'll just do everything like a single integral by using the following substitution.

                     u = 2t                          du = 2dt⇒           dt = 1/2 du

Then the integral is,

∫ e2t  + sec ( 2t ) tan ( 2t) dt = 1/2 ∫ eu  + sec (u ) tan (u ) du

= 1 /2(eu  + sec (u ))+ c

= 1/2 (e2t  + sec ( 2t )) + c

Frequently a substitution can be utilized multiple times in an integral thus don't get excited about that if it happens.  Also note as well that since there was a  ½ in front of the whole integral there have to be a  1 /2 also in front of the answer from the integral.


Related Discussions:- Additionally functions in substitution rule

An initial species population , An initial species population is y(0) = 300...

An initial species population is y(0) = 3000. At t=0 the population starts to grow exponentially with a doubling time of 2 years. Mark the only correct statement: a)    The per

Class mid points and class interval or width, Class Mid points This i...

Class Mid points This is very significant values which mark the center of a provided class. They are acquired by adding together the two limits of a provided class and dividi

Math, is this free for LIFE that means forever never ever going to pay

is this free for LIFE that means forever never ever going to pay

Find out the taylor series for f (x) = ex about x = 0, Find out the Taylor ...

Find out the Taylor Series for f (x) = e x about x = 0. Solution In fact this is one of the easier Taylor Series that we'll be asked to calculate.  To find out the Taylor

Functions, find the derived functions

find the derived functions

Algebra, Evaluate: 30 - 12÷3×2 =

Evaluate: 30 - 12÷3×2 =

Algebraic models, Establish appropriate algebraic models for each of the fo...

Establish appropriate algebraic models for each of the following sets of data. You can use technology to assist. Plot them on grids and demonstrate how you have established each mo

Quotient rule, Quotient Rule : If the two functions f(x) & g(x) are differ...

Quotient Rule : If the two functions f(x) & g(x) are differentiable (that means the derivative exist) then the quotient is differentiable and,

Quantitative techniques, mentioning the type of business you could start an...

mentioning the type of business you could start and the location of your business, use the steps of quantitative methods for decision making narrating them one by one in the applic

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd