Additionally functions in substitution rule, Mathematics

Assignment Help:

Substitution Rule

Mostly integrals are fairly simple and most of the substitutions are quite simple. The problems arise in correctly getting the integral set up for the substitution(s) to be done.  Once you illustrate how these are done it's simple to see what you ought to do, however the first time through these can cause problems if you aren't on the lookout for potential problems.

Example Evaluate following integrals.

      ∫ e2t  + sec ( 2t ) tan ( 2t ) dt

Solution

This integral contains two terms in it and both will need the similar substitution. This means that we ought not to do anything special to the integral. One of the more common "mistakes" here is to break the integral and carry out a separate substitution on each of the part. It isn't really mistake although will definitely enhance the amount of work we'll have to do.  Therefore, since both terms in the integral utilizes the similar substitution we'll just do everything like a single integral by using the following substitution.

                     u = 2t                          du = 2dt⇒           dt = 1/2 du

Then the integral is,

∫ e2t  + sec ( 2t ) tan ( 2t) dt = 1/2 ∫ eu  + sec (u ) tan (u ) du

= 1 /2(eu  + sec (u ))+ c

= 1/2 (e2t  + sec ( 2t )) + c

Frequently a substitution can be utilized multiple times in an integral thus don't get excited about that if it happens.  Also note as well that since there was a  ½ in front of the whole integral there have to be a  1 /2 also in front of the answer from the integral.


Related Discussions:- Additionally functions in substitution rule

Which of the following could be the dimensions the courty x, Katie's school...

Katie's school has a rectangular courtyard whose area can be expressed as 3x 2 - 7x + 2. Which of the following could be the dimensions of the courtyard in terms of x? Since t

Point, what will be the activity of the above said title

what will be the activity of the above said title

Triangles, about scalene,equilateral and isosceles.

about scalene,equilateral and isosceles.

Geometry, geometry fbw = 128 saf= 104 what is rfd

geometry fbw = 128 saf= 104 what is rfd

Find a formula for its frequency of oscillation, The frequency of oscillati...

The frequency of oscillation of an object suspended on a spring depends on the stiffness k of the spring (called the spring constant) and the mass m of the object. If the spring is

Calculus!, x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by...

x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by the lines and curves.

Brahmaguptas problem, How to solve Brahmaguptas Problem? Explain Brahmagupt...

How to solve Brahmaguptas Problem? Explain Brahmaguptas Problem solving method?

Derivatives for logarithm, Logarithm Functions : Now let's briefly get the...

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of ea

Limits, lim(x->0) xln²(xln(x))

lim(x->0) xln²(xln(x))

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd