Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Substitution Rule
Mostly integrals are fairly simple and most of the substitutions are quite simple. The problems arise in correctly getting the integral set up for the substitution(s) to be done. Once you illustrate how these are done it's simple to see what you ought to do, however the first time through these can cause problems if you aren't on the lookout for potential problems.
Example Evaluate following integrals.
∫ e2t + sec ( 2t ) tan ( 2t ) dt
Solution
This integral contains two terms in it and both will need the similar substitution. This means that we ought not to do anything special to the integral. One of the more common "mistakes" here is to break the integral and carry out a separate substitution on each of the part. It isn't really mistake although will definitely enhance the amount of work we'll have to do. Therefore, since both terms in the integral utilizes the similar substitution we'll just do everything like a single integral by using the following substitution.
u = 2t du = 2dt⇒ dt = 1/2 du
Then the integral is,
∫ e2t + sec ( 2t ) tan ( 2t) dt = 1/2 ∫ eu + sec (u ) tan (u ) du
= 1 /2(eu + sec (u ))+ c
= 1/2 (e2t + sec ( 2t )) + c
Frequently a substitution can be utilized multiple times in an integral thus don't get excited about that if it happens. Also note as well that since there was a ½ in front of the whole integral there have to be a 1 /2 also in front of the answer from the integral.
Velocity Problem : Let's look briefly at the velocity problem. Several calculus books will treat it as its own problem. . In this problem we are given a position function of an
Adison earned $25 mowing her neighbor''s lawn. Then she loaned her friend $18, and got $50 from her grandmother for her birthday. She now has $86. How much money did Adison have to
Discrete Uniform Distribution Acme Limited is a car manufacturer. The company can paint the car in 3 possible colors: White, Black and Blue. Until the population is sampled, th
Applications of Integrals In this part we're going to come across at some of the applications of integration. It should be noted also that these kinds of applications are illu
Q. What is Addition Rule of probability? Ans. Suppose there are 17 girls and 15 boys in your stats class. There are 17 + 15 = 32 ways for your teacher to pick one student
Multiply following. Assume that x is positive. (3√x-√y)(2√x-5√y) Solution (3√x-√y)(2√x-5√y) =6√x 2 -15√x√y-2√x√y+5√y
Noel rode 3x miles on his bike and Jamie rode 5x miles on hers. In terms of x, what is the total number of miles they rode? The terms 3x and 5x are such as terms since they hav
how can i find the online students ?
Illustration of Rank Correlation Coefficient Sometimes numerical data such refers to the quantifiable variables may be described after which a rank correlation coefficient may
The length of Kara's rectangular patio can be expressed as 2x - 1 and the width can be expressed as x + 6. In the terms of x, what is the area of her patio? Since the area of a
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd