Adding equally sized groups-prerequisites for multiplication, Mathematics

Assignment Help:

Adding Equally Sized Groups:  Once children have had enough practice of making groups of equal size, you can ask them to add some of these equal groups. They can now begin to attempt questions like 'How many things are there altogether in 2 bags of 3 marbles each?'. They can do several activities of this kind. Gradually they can move on to adding more and more equally sized groups of larger sizes, like 5 groups of 6 objects each. Children doing such activities slowly begin to count serially with equally sized regular gaps. This is called skip counting.

Children can practise skip counting through games, stories and other activities. For instance, they can play 'dash'. In this game children sit in a circle and count serially. Each child says one number turn by turn. The rule is that wherever a multiple of a pre-decided number occurs, that child has to say 'dash' instead of saying the number aloud. For example, if the number chosen is four, then the first child will say 1, followed by the second child saying 2, and then the next ones say 3, 'dash', 5,6, 7, and again 'dash', and so on. A different number can be chosen, say 7, the next time round. In this case 7, 14, etc., would not be spoken out. Slowly a pattern of the absent numbers begins to form in the mind of the children. Activities of counting equal groups, and those like 'dash', help form this pattern.

This recognition slowly leads the child to learn to count with equal gaps. Skip counting can also be practised through stories that use a number strip. The strip can consist of numbers written serially from 1 to 50. Different things can be made on the strip.

For example, (1) can have a tree, (2) can have a butterfly, and so on. You could add a river, mountain, house, etc. A story can be made about a jumping rabbit and a hopping frog, for example. The frog can only hop three steps at a time and the rabbit can only jump four steps at a time. They are good friends, and they often meet. You could ask the children at which numbers the two can meet. The condition that the rabbit jumps four steps means that the rabbit can only go to those points which are multiples of 4. It cannot get to

the things that are on the other cells. It can ask the help of the frog to get some of the things which are not accessible to it but are accessible to the frog. The children could be asked which objects these are. A possible strip upto 20 cells.

You can have several variations of the story to get children to practise other processes too. Now, why don't you try and evolve some activities that involve skip counting?

E2) Evolve a group activity with cards numbered from 1 to 50 or 100 for children to practise skip coding in an interesting way.

E3) Evolve an outdoor game which helps children practise skip counting in fives.

Counting a number of equal groups and skip counting w@ a given group size are Multiplication and Division essentially the same process. Both these actually imply multiplying two numbers. So, once children are comfortable with adding equally sized groups, they could be formally introduced to multiplication.


Related Discussions:- Adding equally sized groups-prerequisites for multiplication

what is probability that point will be chosen from triagle, In the adjoini...

In the adjoining figure ABCD is a square with sides of length 6 units points P & Q are the mid points of the sides BC & CD respectively. If a point is selected at random from the i

Linear Programming, #question.A manufacturer produces two items, bookcases ...

#question.A manufacturer produces two items, bookcases and library tables. Each item requires processing in each of two departments. Department 1 has 40 hours available and departm

Homework, joey asked 30 randomly selected students if they drank milk, juic...

joey asked 30 randomly selected students if they drank milk, juice, or bottled water with their lunch. He found that 9 drank milk, 16 drank juice, and 5 drank bottled water. If the

Math Help, 1. Which of the following is greater than 4.3 x 10^9 a. 2.1 x ...

1. Which of the following is greater than 4.3 x 10^9 a. 2.1 x 10^9 b. 3.2 x 10^9 c. 5.3 x 10^9 d. 7.4 x 10^8 2. Which of the following is less than 6.5 x 10^-5 a. 1.4 x 10

Fractions, my daughter brought home home work im not sure how to do it the ...

my daughter brought home home work im not sure how to do it the fractions has to be labled from least to greatest

Example of intersection, Can anybody provide me the solution of the followi...

Can anybody provide me the solution of the following example? You are specified the universal set as T = {1, 2, 3, 4, 5, 6, 7, 8} And the given subjects of the universal s

Mr, i needed help with algebra

i needed help with algebra

Illustrate exponential distribution, Q. Illustrate Exponential Distribution...

Q. Illustrate Exponential Distribution? Ans. These are two examples of events that have an exponential distribution: The length of time you wait at a bus stop for the n

Remainder when 7^103 is divided by 24 , Find the remainder when 7^103 is di...

Find the remainder when 7^103 is divided by 24 Solution) we know by the concept of mod that.....   49 is congruent to 1 mod 24(means if 1 is subtracted fom 49 u get 48 which is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd