Ac motors, Electrical Engineering

Assignment Help:

  AC Motors

DC motors that have their magnetic fields produced by coils as described earlier can, in principle,  be powered from AC as well, since if the applied voltage reverses (as it does in ac), then the current  in both the rotor and stator coils will reverse together, leading to no change in the direction of the torque produced. This is not the case if the magnetic fields   are produced   by permanent magnets instead of coils. In practice, energising a motor designed for DC with AC may not be very efficient because the manufacturer may not have made the motor from materials that reduce eddy current losses, expecting this not to be important (which it isn't for DC).

 

The main distinction between a motor and a generator is that, in a motor the rotr back emf is less than the applied voltage by an amount  equal to  the voltage drop across the armature (and field coil if series connected) resistance whilst in a generator the back emf is larger than the supplied voltage for the same reason. If the stator windings of the AC alternator described above were energised by ac, then

 

the   machine   would   work   as   a   motor instead, provided the rotor was turning at exactly the right speed so that each time a rotor pole approached a stator winding, the field  direction  in  that  winding  was  such that a torque was produced in the direction of motion. For this to occur, the rotor must turn  at  the  same  speed  that  would  be needed to create the frequency of voltage being applied to the stator. For this reason, such a machine is called a 'synchronous motor'.

 

A brushless version is often preferred  in which the rotor field is produced by permanent magnets rather than a coil. The power   available   from   such   motors   is limited to <50kW.The main problem with this type of motor is running it up to the synchronous speed in the first place. If it is not very close to the synchronous speed, it will not turn at all. An auxiliary motor is required to achieve the synchronous speed, after which the main motor can take over. Because of these starting problems, it has limited use, mainly applications that do not require the motor to start and stop very often. More recently, this problem can be overcome by using modern power electronic drives that start the motor with very low frequency ac and gradually increase the frequency of the supply as the rotor speeds up, keeping the rotor close to synchronism. The motor is usually fitted with a rotor position sensing device  so  that  the  electronics  can  check that  the rotor is indeed  staying synchronous with the  applied  stator frequency.

 

To  avoid  such  problems,  a  very  widely used alternative form of synchronous motor is the 'induction motor'

 

 


Related Discussions:- Ac motors

Carthode ray oscilloscope, with a simple circuit,explain the construction o...

with a simple circuit,explain the construction of Direct Reading Probe of a cathode ray oscilloscope

Calculate the current flowing through the inductor, The circuit is altered ...

The circuit is altered by replacing the capacitor, C1 with an inductor of 150mH and left with the switch in position (a) for a long time. At time t=0, the switch is moved from posi

Power system engineering, A three-phase transposed line is composed of one ...

A three-phase transposed line is composed of one ACSR conductor per phase with flat horizontal spacing of 11 meters as shown in Figure (a). The conductors have a diameter of 3.625

Pdc, disadvantages of shunt&series clippers

disadvantages of shunt&series clippers

Illustrate the photo-conductive cell, Illustrate in detail digital encoders...

Illustrate in detail digital encoders. Illustrate the following with their application: Photo-conductive cell Photo-voltaic cell

Express the instantaneous power, Q. On a per-phase basis, let v = √2 V cos ...

Q. On a per-phase basis, let v = √2 V cos ωt and i = √2 I cos (ωt - θ). (a) Express the instantaneous power s(t) in terms of real power P and reactive power Q. (b) Now consid

Calculate the mechanical speed of rotar, Calculate the mechanical speed of ...

Calculate the mechanical speed of rotar: An asynchronous machine of 460V, 25hp, 4 poles with rotor wound in Y has the following data (of the side stator): Resistance of the

Switching characteristics - power semiconductor devices, Switching charact...

Switching characteristics When  a positive signal  is applied GTO starts  conducting before  initiation of  conduction anode  current  is zero  and anode to cathode voltage Va

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd