3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

What do you understand by the term branding, Question 1: (a) Explain th...

Question 1: (a) Explain the term ‘Corporate Identity'. (b) Give four examples of what a Corporate Identity comprises of and briefly explain their uses. (c) You are an employe

Disadvantages of analogue signal over digital signal, Problem: (a) Lis...

Problem: (a) List four components of ‘Multimedia'. (b) Write short notes on the following: (i) itunes (ii) ipods (c) Some Multimedia development teams can have an

Graphics image processing-image processing, Graphics Image Processing: The...

Graphics Image Processing: The most generally utilized software is: Photoshop. Characteristics: I.          Most general image processing software. II.         Focuses upon

Reflection about a line - 2-d and 3-d transformations, Reflection about a L...

Reflection about a Line - 2-D and 3-D Transformations Reflection is a transformation that produces the mirror image of an object. Since we discussed that the mirror reflection

Improving gif compression, Improving GIF Compression: Features of LZW comp...

Improving GIF Compression: Features of LZW compression can be used to enhance its efficiency and thereby decrease the size of your graphic interchange format graphics. The strateg

Briefly explain types of animation, Question 1 Briefly explain types of an...

Question 1 Briefly explain types of animation Question 2 Briefly explain steps involved in animation process Question 3 What is Layout? Explain two types of layout

Interactive Computer Graphics, Explain the different input modes used in in...

Explain the different input modes used in interactive computer graphics.

What are the developments of cad, What are the Developments of CAD Now...

What are the Developments of CAD Now CAD packages can be linked to 3D ink jet printers which produce an actual prototype model by building up layers/slices in fine powder (suc

Representational animation - computer animation, Representational Animation...

Representational Animation - Computer Animation This method permits an object to change its shape throughout the animation. There are three sub-types to this. The initial is th

Adobe photoshop - softwares for computer animation, Adobe Photoshop - Softw...

Adobe Photoshop - Softwares for computer animation Whereas Adobe Photoshop is not a computer animation application, this is one of the top of the line graphics programs. This

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd