3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Types of basic tools of multimedia, Types of Basic Tools Different typ...

Types of Basic Tools Different types of basic tools for creating and editing multimedia components are: Drawing and Painting tools Image editing tools OCR softwar

Audio file formats, Audio File Formats: It is a container format for ...

Audio File Formats: It is a container format for storing audio data in a computer system. Many file formats are there for storing audio files. The common approach towards

Midpoint circle generation algorithm, Midpoint circle generation algorithm ...

Midpoint circle generation algorithm This makes use of a circle function. Based on this circle function, a decision parameter is created which is used to decide successive pixe

Adobe flash - softwares for computer animation, Adobe flash - Softwares for...

Adobe flash - Softwares for computer animation Formerly, it was termed as Macromedia flash and prior to this, this was Futuresplash. This is in fact an IDE that refers to both

What is translation, What is translation?  Translation is the process o...

What is translation?  Translation is the process of changing the position of an object in a straight-line path from one coordinate location to another. Each point (x, y) in the

Cyrus beck algorithm - line clipping algorithm, Cyrus Beck Algorithm - Line...

Cyrus Beck Algorithm - Line Clipping Algorithm Cyrus Beck Line clipping algorithm is actually, a parametric line-clipping algorithm. The term parametric means that we requi

Orientation dependence - modeling and rendering, Orientation Dependence - M...

Orientation Dependence - Modeling and Rendering The outcomes of interpolated-shading models are dependent of the projected polygon's orientation. Because values are interpolat

Briefly explain modes and switches, Question 1 Write a note on: Audio Spec...

Question 1 Write a note on: Audio Spectrum & Audio Waveform Question 2 What is high dynamic range color? Explain gradient color Question 3 Describe Time-Remapping

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd