Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
You are required to undertake the following tasks:1. Problem IdentificationDownload the dataset assigned to you from the module Blackboard site.Read the data description file to learn some basic characteristics of the dataset. Make sure you have understood the nature of the data.Perform simple data exploration to get to know: the total number of instances in the dataset, the number of attributes, the data type of each attribute, the basic statistics of each attribute (value range, skewness, and kurtosis), etc. Identify and understand the business problems concerned with regard to the data.Translate the business problem to a data mining problem, and identify the associated data mining tasks to be performed.3. Data Preparation Transform the dataset into the proper format to be used by SAS® in order to carry out the required data mining task.Choose appropriate methods for data pre-processing, including dealing with missing values, tackling noisy data, conducting proper data transformation and normalisation, etc.Divide the whole dataset into several subsets to be used for model training, test and validation.4. Model BuildingPerform the data mining task you have identified in the first task using the pre-processed dataset. Each task should be completed by applying at least two different algorithms. For classifier building, for example, you may choose decision trees and artificial network networks, or decision trees and nearest-neighbour based algorithm, etc.In order to build the most appropriate and accurate models different combinations of the relevant model parameters should be considered for each of the selected algorithms.5. Model EvaluationUse the test and validation datasets created in the second task to evaluate the performance of the model produced from the data mining process. Compare the performance of different models in terms of accuracy, generalisation ability, simplicity and cost etc.Discuss how the models created can be used to address the main business problems identified in the first task.Final reportYou final report should be well-formatted as a formal report containing Title page, Table of Contents, Abstract and References. The main content of the report must as a minimum include the following information: A brief discussion on the methodology adopted for the data mining process.A discussion on what pre-processing was carried out on the given dataset and why it should be conducted.A discussion on each of the algorithms that were chosen and applied for the data mining task, and an explanation of the settings for the relevant nodes employed in SAS® Enterprise Miner.A detailed analysis and sound interpretation of the models constructed, including the performance of each model, and their applicability to address the original business problems. A reflective commentary and evaluation on the coursework. Essential statistics, screen shots, and graphs.The report should be submitted in a hard copy as well as an electronic copy.
Hello, I''m doing a project that needs an ANSYS software for analysis calculation, is it possible to do me that if I provide you all the the information needed. Thank you
Why Industries that manufacture racing cars prefers nickel based alloys for engine components and iron based alloys for structural parts?
what is the possible breakdown of this topic
how to make an amplifier circuit ?
I need the following corporate finance problems completed in an excel spreadsheet. How much would this cost? 1) An investment project requires a net investment of $100,000. The pr
We now have some idea about what models are available to simulate the flow over an aerofoil, and also how to use the Hanley package to apply these methods. Keep referring to you
Turbine engines cooling : Turbine engines are designed to convert heat energy into mechanical energy. The combustion process is continuous and, therefore, heat is produced. On
Working of bi- CMOS invertor in vlsi
what are the advantages of dual-card Kanban system campared to single card in a manufacturing environment
Common faults - Fire safety management: Common faults found are: Combustible items left in protected routes Locked exits Fire doors wedged open Exits obstru
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd