Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Patients with a cardio logical illness and less than normal heart muscle strength can benefit from an assistance device. An electric ventricular assist device (EVAD) converts electric power into blood flow by moving a pusher plate against a flexible blood sac. The pusher plate reciprocates to eject blood in systole and to allow the sac to fill in diastole. The EVAD will be implanted in tandem or in parallel with the intact natural heart as shown in Figure AP9.11 (a). The EVAD is driven by rechargeable batteries, and the electric power is transmitted inductively across the skin through a transmission system. The batteries and the transmission system limit the electric energy storage and the transmitted peak power. We desire to drive the EVAD in a fashion that minimizes its electric power consumption [33].
The EVAD has a single input, the applied motor voltage, and a single output, the blood flow rate. The control system of the EVAD performs two main tasks: It adjusts the motor voltage to drive the pusher plate through its desired stroke, and it varies the EVAD blood flow to meet the body's cardiac output demand. The blood flow controller adjusts the blood flow rate by varying the EVAD beat rate. A model of the feedback control system is shown in Figure AP9.11 (b). The motor, pump, and blood sac can be modeled by a nominal time delay with T = 1 s. The goal is to achieve a step response with zero steady-state error and percent overshoot P.O. ≤ 10%.
Consider the controller
For the nominal time delay of T = 1 s, plot the step response and verify that steady-state tracking error and percent overshoot specifications are satisfied. Determine the maximum time delay, T, possible with the PID controller that continues to stabilize the closed loop system. Plot the phase margin as a function of time delay up to the maximum allowed for stability.
MATH1550H: Assignment: Question: A word is selected at random from the following poem of Persian poet and mathematician Omar Khayyam (1048-1131), translated by English poet Edward Fitzgerald (1808-1883). Find the expected value of the length of th..
MATH1550H: Assignment: Question: what is the least number of applicants that should be interviewed so as to have at least 50% chance of finding one such secretary?
MATH1550H: Assignment: Question: Experience shows that X, the number of customers entering a post office during any period of time t, is a random variable the probability mass function of which is of the form
MATH1550H: Assignment:Questions: (Genetics) What is the probability that at most two of the offspring are aa?
MATH1550H: Assignment: Questions: Let’s assume the department of Mathematics of Trent University has 11 faculty members. For i = 0; 1; 2; 3; find pi, the probability that i of them were born on Canada Day using the binomial distributions.
Caselet on McDonald’s vs. Burger King - Waiting time
Generate descriptive statistics. Create a stem-and-leaf plot of the data and box plot of the data.
Problems on Sampling Variability and Standard Error and Confidence Intervals
Estimate the population mean
Conduct a marketing experiment in which students are to taste one of two different brands of soft drink
Find out the probability
LINEAR PROGRAMMING MODELS
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd