Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
1. A group is considering installing a solar power station and has asked you for your recommendation if it should be a photovoltaic system or a solar thermal system. At this stage you are asked not to include cost factors. The single point design condition they have given you is for an incident solar radiation on the collector of 550 W/m2, a surrounding temperature of 18 C. The dead state for this problem should be taken as To = 291 K, Po = 1 bar. You can perform your analysis at steady state conditions. In addition to determining the power output and first law efficiency of the options, you have been requested to determine the exergy destroyed for each of them.
The photovoltaic system has an efficiency of 0.15 defined as the power output/incident solar radiation. The basic photovoltaic collector is 1.1 m2 and losses heat from both the front and back surface. The edge area can be neglected. The convective heat transfer coefficient is 10 W/m2 K. The inverter and signal conditioning device used to connect the photovoltaic collector to the grid and household has an efficiency of 0.91. The inverter operates isothermally.
The solar thermal collector will heat the working fluid from a temperature of 32 C and has a concentration factor of 10,000. The concentration factor is the ratio of the incident solar radiation on the heat transfer surface to the incident solar radiation area. It is a concentrating collector with an opening of 1.1 m2 and a heat transfer area of 0.05 m2 due to the concentration factor. The mass flow rate of the working fluid through the system is 0.009 Kg/s. The heat transfer area is not equal to the area of absorption. The convective heat transfer coefficient is 1.0 W/m2 K. The heat transfer from the collector can be considered to be at the average temperature of the working fluid, (Tin + Tout)/2. The specific heat of the working fluid is 678 J/(Kg K). The useful energy from this collector system is the change in the enthalpy of the flow through the system. The working fluid enters a heat engine with an efficiency of 0.30 that is connected to a generator with an efficiency of 0.90. The generator operates isothermally.
a) Determine the power output for each type of system for a basic collector area.
b) Determine the exergy destroyed for each type of system.
c) Which system would you recommend on this analysis? This question neglects the costs.
Package Design Brief: Assume you are the packaging engineer for a large consumer products company. In this company, the Packaging Design Briefs are initiated by the marketing group and forwarded to the Package Engineering group.
Define dynamic viscosity, Determine the centroid, Pressure due to the height of liquid, Advantage of changing the liquid, Calculate the total moment about the hinge of the seal gate.
DOF system and Find the differential equation describing the system
Write a paper on Boyle's law and describe Compression and Combustion stroke . Also explain Charles's law and illustrate SI engine and CI engine.
To Verify the law for parallelogram of forces, law for triangle of forces and law of polygon of forces. These laws are very useful to calculate unknown forces in very short time.
What is the discharge revised discharge pressure of the compressor.
The role of IFRS in both developing and developed capital markets.
Wind turbines are becoming more and more common as a method of energy production, wind turbines by their very nature are dynamic and are subject to and create their own internal and external kinematics and kinetics.
8 x product engineering and design review (week 2 – 12), ~3 pages per item which must contain a brief description of the product then delve into concepts such as materials selection, manufacturing methods, life cycle analysis, recyclability and overa..
Design of absorption column and the cooler. Process design of other units should be completed along with pipe sizes.
Determine maximum total bending moment (static plus dynamic) of the beam under steady-state conditions.
Determine the magnitude of the horizontal and vertical components of the force of the water on the gate.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd