What is tunnel effect and applications of tunnel effect, Electrical Engineering

What is tunnel effect? Discuss the Alpha decay as an example of tunnel effect. Prove that tunneling increases on decreasing the height and width of the barrier. Explain what do you mean by mean by the terms potential well and potential barrier. Obtain an expression for transmission coefficient of a rectangular potential barrier.

Where U0 = height of the rectangular potential barrier. Draw graphs showing variation of T with particle energy E and barrier width a.

What is quantum mechanical "tunneling" ? Give one example.

 Potential Step

If a particle having energy less than V0 i.e. E0 approaches this barrier form the left i.e. from 1st region, classically the particle will always be reflected and hence will not penetrate the barrier. However, ware mechanics predicts that the particle has some probability of penetrating to region , the   probability of penetration being greater if and a are smaller. Morever, if E>V0 classical mechanics predicts that the particle will always be transmitted; while according to wave-mechanics, the particle has a finite probability of transmission and hence it is not certain that, the particle will penetrate the barrier.            If a particle with energy E is incident on a thin energy on a thin energy barrier of height greater than E, there is a finite probability  of the particle penetrating the barrier. This phenomenon is called the tunnel effect. This effect was used by George Gamow in 1928 to explain the process of decay exhibited by radioactive nuclei.

Applications of Tunnel Effect

Emission of particles from radioactive nuclei of Alpha-decay. The average energy of an particle formed within the nucleus is less than the height of the  potential barrier around the nucleus which is formed by the nuclear binding forces. Classically, the particle cannot escape from the nucleus, but Quantum mechanically it tunnels the barrier. This tunneling constitutes radioactive decay. The decay of nuclei by emission of an alpha-particle can be regarded as a tunneling process. A radioactive nucleus can be thought of having an alpha particle (a helium nucleus) trapped in a spherical potential well arising out of extremely strong nuclear attractive forces between the nucleons. These  attractive forces are short range. They operate on the particle so long as it is inside the nucleus. Once the alpha-particle is out of the nucleus Coulomb repulsive force operates between the positive charge of alpha-particle and the positive charge of residual nucleus. This electrical repulsion is negligible when the alpha-particle is under the effect of a strong attractive nuclear force up to a certain distance (nuclear size) after which long range coulomb repulsive force operates on it. As the exact form of nuclear forces is still unknown,  the potential as seen by the alpha-particle is generally represented as shown in fig. Thus there appears a potential barrier height E < V (coulomb repulsive barrier), then according to classical mechanics such alpha-particles cannot come out of the nucleus. But because of wave nature they actually have small probability of tunneling through the barrier. The tunneling probability per unit time is equal to the number of bounces per unit time multiplied by the tunneling coefficient per of the natural radioactive nuclei is of the order of 107 m/sec. and the nuclear size is of the order of 10-14 m, the alpha particle strikes the barrier about 1021 times per second. Each time it bounces the barrier the probability that it penetrates the barrier is equal to the transmission coefficient T. Hence the tunneling probability per unit time is for a barrier much higher than the energy of the particle and the barrier width a = R c -R from fig. the decay rate is thus determined predominantly by the exponential factor in T. Its value is very sensitive to actual shape of potential curve and can vary significantly in order of magnitude from nucleus to nucleus. Thus qualitatively it is possible to explain decay as an example of quantum mechanical Tunnel effect.


Posted Date: 7/2/2012 9:59:53 PM | Location : United States

Related Discussions:- What is tunnel effect and applications of tunnel effect, Assignment Help, Ask Question on What is tunnel effect and applications of tunnel effect, Get Answer, Expert's Help, What is tunnel effect and applications of tunnel effect Discussions

Write discussion on What is tunnel effect and applications of tunnel effect
Your posts are moderated
Related Questions
Spread Time (t s ) During  spread time anode  voltage  falls from 10% I a  to the  on state  voltage  drop  and anode  current  rises  from 90% I a   to final  value  of anode

what is cro ?

Equivalent Circuit of a Polyphase Induction Machine The inductionmachinemay be regarded as a generalized transformer inwhich energy is converted and electric power is transferr

1.    Introduction The objective of this assignment is to design and evaluate a stabilised discrete linear power supply. The power supply requires to be designed according to t

Question 1: (a) Outline the architecture of MIT's iLabs. Design a diagram supporting your explanation. (b) Give advantages/disadvantages of the MIT Microelectronics iLabs wi

Q . Differentiate between an integrator and differentiator? Integrators 1 Integrators are circuits in which output voltage is proportional to the integral of the input.

Direct Tapping and Unmetered Connections Direct Tapping Direct tapping of power by non-customers is widely prevalent. This is mainly in domestic and agricultural categori

Q. Mode of propagation of electromagnetic waves? The mode of propagation of electromagnetic waves in free space and atmosphere may be subdivided into three categories: • Gro

Construction of inductor An inductor is usually constructed as a coil of conducting material, typically opper wire, wrapped around a core either of air or ferrous material.