Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Is this a sample statistic.., jenna asked 100 of her schoolmates if they ha...

jenna asked 100 of her schoolmates if they have had their first kiss and 43 of them said yes

Numeric patterns, Kelli calls her grandmother every month Kelli also calls ...

Kelli calls her grandmother every month Kelli also calls her cousin.If Kelli calls her cousin in January, how many calls will Kelli have made to her grandmother and her cousin by t

Find extrema & relative extrema f ( x ) = x3 on [-2, Recognizes the absolut...

Recognizes the absolute extrema & relative extrema for the given function.                                                    f ( x ) = x 3      on        [-2, 2] Solution :

Determine the length of the rectangle, The height of a rectangle is 20 cm. ...

The height of a rectangle is 20 cm. The diagonal is 8 cm more than the length. Determine the length of the rectangle. a. 20 b. 23 c. 22 d. 21 d. To determine the len

Area related to circle, If ABCD isaa square of side 6 cm find area of shad...

If ABCD isaa square of side 6 cm find area of shaded region

How many pages must he read before he takes a break, Joey has 30 pages to r...

Joey has 30 pages to read for history class tonight. He decided in which he would take a break while he finished reading 70% of the pages assigned. How many pages must he read befo

Indices, 16 raised to the power x eqaual to x raised to the power 2. find x...

16 raised to the power x eqaual to x raised to the power 2. find x

Application of derivatives, the base b of a triangle increases at the rate ...

the base b of a triangle increases at the rate of 2cm per second, and height h decreases at the rate of 1/2 cm per second. Find rate of change of its area when the base and height

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd