Use of asymptotic notation in the study of algorithm, Data Structure & Algorithms

Q. What is the need of using asymptotic notation in the study of algorithm? Describe the commonly used asymptotic notations and also give their significance.                                        

Ans:

The running time of the algorithm depends upon the number of characteristics and slight variation in the characteristics varies and affects the running time. The algorithm performance in comparison to alternate algorithm is best described by the order of growth of the running time of the algorithm. Let one algorithm for a problem has time complexity of c3n2 and another algorithm has c1n3 +c2n2 then it can be simply observed that the algorithm with complexity c3n2 will be faster compared to the one with complexity c1n3 +c2n2 for sufficiently larger values of n. Whatever be the value of c1, c2   and c3 there will be an 'n' past which the algorithm with the complexity c3n2 is quite faster than algorithm with complexity c1n3 +c2n2, we refer this n as the breakeven point. It is difficult to determine the correct breakeven point analytically, so asymptotic notation is introduced that describe the algorithm performance in a meaningful and impressive way. These notations describe the behaviour of time or space complexity for large characteristics. Some commonly used asymptotic notations are as follows:

1)      Big oh notation (O): The upper bound for a function 'f' is given by the big oh notation (O). Taking into consideration that 'g' is a function from the non-negative integers to the positive real numbers, we define O(g) as the set of function f such that for a number of real constant c>0 and some of the non negative integers constant n0  , f(n)≤cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): hear exists positive constants such that 0≤f f(n)≤cg(n) for all n, n≥n0} , we say "f is oh of g".

2)      Big Omega notation (O): The lower bound for a function 'f' is given by the big omega notation (O). Considering 'g' is the function from the non-negative integers to the positive real numbers, hear we define O(g) as the set of function f  such that  for a number of real constant c>0 and a number of non negative integers constant n0  , f(n)≥cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): here exists positive constants such that 0≤cg(n) ≤f(n) for all n, n≥n0}.

3)      Big Theta notation (θ):  The upper and lower bound for the function 'f' is given by the big oh notation (θ). Taking 'g' to be the function from the non-negative integers to the positive real numbers, here we define θ(g) as the set of function f  such that  for a number of real constant c1 and c2 >0 and a number of non negative integers constant n0  , c1g(n)≤f f(n)≤c2g(n) for all n≥n0. Mathematically, θ(g(n))={f(n): here exists positive constants c1 and c2 such that c1g(n)≤f f(n)≤c2g(n) for all n, n≥n0} , hence we say "f is oh of g"

Posted Date: 7/10/2012 6:17:26 AM | Location : United States







Related Discussions:- Use of asymptotic notation in the study of algorithm, Assignment Help, Ask Question on Use of asymptotic notation in the study of algorithm, Get Answer, Expert's Help, Use of asymptotic notation in the study of algorithm Discussions

Write discussion on Use of asymptotic notation in the study of algorithm
Your posts are moderated
Related Questions
Properties of colour Colour descriptions and specifications generally include three properties: hue; saturation and brightness. Hue associates a colour with some position in th

Write an algorithm using pseudocode which takes temperatures input over a 100 day period (once per day) and output the number of days when the temperature was below 20C and the num

What is Algorithm A finite sequence of steps for accomplishing some computational task. An algorithm should Have steps which are simple and definite enough to be done

A town contains a total of 5000 houses. Every house owner has to pay tax based on value of the house. Houses over $200 000 pay 2% of their value in tax, houses over $100 000 pay 1.

Q. By giving an example show how multidimensional array can be represented in one the dimensional array.

include include include /* Definition of structure node */ typedef struct node { int data; struct node *next; } ; /* Definition of push function */

what is frequency count with examble? examble?

Question 1 Discuss the following theorems with respect to Splay Trees- Balance Theorem Dynamic Finger Theorem   Question 2 Write a C program for implementation

an electrical student designed a circuit in which the impedence in one part of a series circuit is 2+j8 ohms and the impedent is another part of the circuit is 4-j60 ohm mm program

Taking a suitable example explains how a general tree can be shown as a Binary Tree. Conversion of general trees to binary trees: A general tree can be changed into an equiv