Use of asymptotic notation in the study of algorithm, Data Structure & Algorithms

Q. What is the need of using asymptotic notation in the study of algorithm? Describe the commonly used asymptotic notations and also give their significance.                                        

Ans:

The running time of the algorithm depends upon the number of characteristics and slight variation in the characteristics varies and affects the running time. The algorithm performance in comparison to alternate algorithm is best described by the order of growth of the running time of the algorithm. Let one algorithm for a problem has time complexity of c3n2 and another algorithm has c1n3 +c2n2 then it can be simply observed that the algorithm with complexity c3n2 will be faster compared to the one with complexity c1n3 +c2n2 for sufficiently larger values of n. Whatever be the value of c1, c2   and c3 there will be an 'n' past which the algorithm with the complexity c3n2 is quite faster than algorithm with complexity c1n3 +c2n2, we refer this n as the breakeven point. It is difficult to determine the correct breakeven point analytically, so asymptotic notation is introduced that describe the algorithm performance in a meaningful and impressive way. These notations describe the behaviour of time or space complexity for large characteristics. Some commonly used asymptotic notations are as follows:

1)      Big oh notation (O): The upper bound for a function 'f' is given by the big oh notation (O). Taking into consideration that 'g' is a function from the non-negative integers to the positive real numbers, we define O(g) as the set of function f such that for a number of real constant c>0 and some of the non negative integers constant n0  , f(n)≤cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): hear exists positive constants such that 0≤f f(n)≤cg(n) for all n, n≥n0} , we say "f is oh of g".

2)      Big Omega notation (O): The lower bound for a function 'f' is given by the big omega notation (O). Considering 'g' is the function from the non-negative integers to the positive real numbers, hear we define O(g) as the set of function f  such that  for a number of real constant c>0 and a number of non negative integers constant n0  , f(n)≥cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): here exists positive constants such that 0≤cg(n) ≤f(n) for all n, n≥n0}.

3)      Big Theta notation (θ):  The upper and lower bound for the function 'f' is given by the big oh notation (θ). Taking 'g' to be the function from the non-negative integers to the positive real numbers, here we define θ(g) as the set of function f  such that  for a number of real constant c1 and c2 >0 and a number of non negative integers constant n0  , c1g(n)≤f f(n)≤c2g(n) for all n≥n0. Mathematically, θ(g(n))={f(n): here exists positive constants c1 and c2 such that c1g(n)≤f f(n)≤c2g(n) for all n, n≥n0} , hence we say "f is oh of g"

Posted Date: 7/10/2012 6:17:26 AM | Location : United States







Related Discussions:- Use of asymptotic notation in the study of algorithm, Assignment Help, Ask Question on Use of asymptotic notation in the study of algorithm, Get Answer, Expert's Help, Use of asymptotic notation in the study of algorithm Discussions

Write discussion on Use of asymptotic notation in the study of algorithm
Your posts are moderated
Related Questions

Write an algorithm for getting solution to the Tower's of Hanoi problem. Explain the working of your algorithm (with 4 disks) with appropriate diagrams. Ans: void Hanoi(int

write an algorithm for the gpa of six students

RGB Model The RGB model is based on the assumption that any desired shade of colour can be obtained by mixing the correct amounts of red, green, and blue light. The exact hues

bst for 40,60,25,50,30,70,35,10,55,65,12

One of the main problems with the linear queue is the lack of appropriate utilization of space. Assume that the queue can store 100 elements & the complete queue is full. Thus, it

write short note on algorithms

Q. Suggest a method of implementing two stacks in one array such that as long as space is there in an array, you should be capable to add an element in either stack. Using proposed

Overlapping or Intersecting A polygon overlaps or intersects the current background if any of its sides cuts the edges of the viewport as depicted at the top right corner of th

In this unit, we will describe a data structure called Graph. Actually, graph is a general tree along no parent-child relationship. In computer science, Graphs have several applica