Types of field-effect transistors, Electrical Engineering

Types of Field-Effect Transistors

The channel of a FET (field-effect transistor) is doped to produce either an N-type semiconductor or a P-type semiconductor. The drain and source might be doped of opposite type to the channel, in case of depletion mode FETs, or doped of identical type to the channel like in enhancement mode FETs. Field-effect transistors are as well distinguished by the method of insulation among the channel and gate. Types of FETs are:

  1. CNFET
  2. The DEPFET is a FET made in a fully-depleted substrate and works like a sensor, amplifier and memory node at the same time. It can be employed as an image (photon) sensor.
  3. The DGMOSFET is a MOSFET along with dual gates.
  4. The DNAFET is a specialized FET which works as a biosensor, using a gate made of single-strand DNA molecules to detect matching DNA strands.
  5. The Fast Reverse or Fast Recovery Epitaxial Diode FET that is abbreviated as FREDFET is a specialized FET designed to provide an extremely fast recovery (turn-off) of the body diode.
  6. The HEMT (High Electron Mobility Transistor), as well called an HFET (hetero structure FET), can be made by using band gap engineering in a ternary semiconductor like AlGaAs (Aluminium gallium arsenide). The fully depleted wide-band-gap material makes the isolation in between gate and body.
  7. The Insulated-Gate Bipolar Transistor that is abbreviated as IGBT is a device for power control. It comprises a structure akin to a MOSFET coupled along with a bipolar-like main conduction channel. These are usually used for the 200-3000 V drain-to-source voltage range of operation. Power MOSFETs (metal-oxide-semiconductor field-effect transistor) are still the device of choice for drain-to-source voltages of 1 to 200 V.
  8. The ISFET (ion-sensitive field-effect transistor) is an Ion-Sensitive Field Effect Transistor employed to calculated ion concentrations in a solution; while the ion concentration (such as H+, see pH electrode) changes, the current via the transistor will change accordingly.
  9. The Junction Field-Effect Transistor that is abbreviated as JFET uses a reverse biased p-n junction to separate the gate from the body.
  10. The Metal-Semiconductor Field-Effect Transistor that is abbreviated as MESFET substitutes the p-n junction of the JFET with a Schottky barrier; employed in GaAs and other III-V semiconductor materials.
  11. The Modulation-Doped Field Effect Transistor that is abbreviated as MODFET uses a quantum well structure made by graded doping of the active region.
  12. The Metal-Oxide-Semiconductor Field-Effect Transistor that is abbreviated as MOSFET utilizes an insulator (typically SiO2) between the gate and the body.
  13. The Nanoparticle Organic Memory Field-Effect Transistor abbreviated as NOMFET.
  14. The Organic Field-Effect Transistor abbreviated as OFET using an organic semiconductor in its channel.
Posted Date: 1/11/2013 12:42:43 AM | Location : United States

Related Discussions:- Types of field-effect transistors, Assignment Help, Ask Question on Types of field-effect transistors, Get Answer, Expert's Help, Types of field-effect transistors Discussions

Write discussion on Types of field-effect transistors
Your posts are moderated
Related Questions
Q. Carrier Modulation by Digital Signals? Digitally modulated signals with low-pass spectral characteristics can be transmitted directly through baseband channels (having low-p

Q. Explain working of Ammeter? In order to measure the current through a wire or line of a circuit, an ammeter is connected in series with the line. A practical ammeter can usu

Turn-on, turn-off, and storage delay: The Bipolar transistor shows a few delay characteristics while turning on and off. Most of the transistors, and particularly power transi

Determine the node voltage by using KCL: Determine the node voltage V and then current flowing through each element by using KCL. Solution Apply KCL at the node whose

1.  Given S(D1) = !Q1 X + !Q1 Q0 + Q1 !Q0 !X                                                        and       S(D0) = !Q1 !Q0 !X + Q0 X + Q1 !Q0 !X       A.  DRAW A MINIMI

Transparent latch D flip  Flop A typical  example  of this  type of D flop  is 7475 shown  in figure when CLK  connected is enable signal is high and the flip  flop  is enabled

Q. Illustrate Transformer coupling? In this method the primary winding of the transformer acts as a collector load and the secondary winding transfers the a.c. output signal di

An interrupt which can be never be turned off (ie. disabled) is called as Non-Maskable interrupt.

Interpret the Assembly Output of the LC - 3 Compilers Goals to understand the stack convention of the LC3 compiler: How the stack pointer and frame pointer are managed

principle and operation of a 3phace induction motor