Two-tape turing machine, Theory of Computation

Let there L1 and L2 . We show that L1 ∩ L2 is CFG .

Let M1 be a decider for L1 and M2 be a decider for L2 .

Consider a 2-tape TM M:

"On input x:

1. copy x on the second tape

2. on the ?rst tape run M1 on x

M=

3. if M1 accepted then goto 4. else M rejects

4. on the second tape run M2 on x

5. if M2 accepted then M accepts else M rejects."

The machine M is a decider and it accepts a string x i? both M1 and M2 accept x.

Two-tape TM is as expressive as the single tape TM.

The process is as follows

"Given a CFG G and a string w , does G generate w ?

Language Formulation (Acceptance Problem for CFG) def

ACFG = {?G , w ? | G is a CFG, w a string and w ∈ L(G )}

The language ACFG is decidable.

 Construct a decider M for ACFG :M = " 1. On input x check if x = ?G , w ? where

G is an CFG and w is a string, if not then M rejects.

2. Convert G into Chomsky normal form.

3. List all derivations in G of length exactly 2|w | - 1,

if w = ? then check if there is the rule S → ?.

4. If w is ever generated then M accepts, else M rejects."

Posted Date: 2/23/2013 12:51:23 AM | Location : United States







Related Discussions:- Two-tape turing machine, Assignment Help, Ask Question on Two-tape turing machine, Get Answer, Expert's Help, Two-tape turing machine Discussions

Write discussion on Two-tape turing machine
Your posts are moderated
Related Questions
The project 2 involves completing and modifying the C++ program that evaluates statements of an expression language contained in the Expression Interpreter that interprets fully pa

Let there L1 and L2 . We show that L1 ∩ L2 is CFG . Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the second

How useful is production function in production planning?

Computer has a single LIFO stack containing ?xed precision unsigned integers (so each integer is subject to over?ow problems) but which has unbounded depth (so the stack itself nev

The fact that regular languages are closed under Boolean operations simpli?es the process of establishing regularity of languages; in essence we can augment the regular operations

Myhill graphs also generalize to the SLk case. The k-factors, however, cannot simply denote edges. Rather the string σ 1 σ 2 ....... σ k-1 σ k asserts, in essence, that if we hav

The key thing about the Suffx Substitution Closure property is that it does not make any explicit reference to the automaton that recognizes the language. While the argument tha


We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.

can you plz help with some project ideas relatede to DFA or NFA or anything