Two-tape turing machine, Theory of Computation

Let there L1 and L2 . We show that L1 ∩ L2 is CFG .

Let M1 be a decider for L1 and M2 be a decider for L2 .

Consider a 2-tape TM M:

"On input x:

1. copy x on the second tape

2. on the ?rst tape run M1 on x

M=

3. if M1 accepted then goto 4. else M rejects

4. on the second tape run M2 on x

5. if M2 accepted then M accepts else M rejects."

The machine M is a decider and it accepts a string x i? both M1 and M2 accept x.

Two-tape TM is as expressive as the single tape TM.

The process is as follows

"Given a CFG G and a string w , does G generate w ?

Language Formulation (Acceptance Problem for CFG) def

ACFG = {?G , w ? | G is a CFG, w a string and w ∈ L(G )}

The language ACFG is decidable.

 Construct a decider M for ACFG :M = " 1. On input x check if x = ?G , w ? where

G is an CFG and w is a string, if not then M rejects.

2. Convert G into Chomsky normal form.

3. List all derivations in G of length exactly 2|w | - 1,

if w = ? then check if there is the rule S → ?.

4. If w is ever generated then M accepts, else M rejects."

Posted Date: 2/23/2013 12:51:23 AM | Location : United States







Related Discussions:- Two-tape turing machine, Assignment Help, Ask Question on Two-tape turing machine, Get Answer, Expert's Help, Two-tape turing machine Discussions

Write discussion on Two-tape turing machine
Your posts are moderated
Related Questions
Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL


s-> AACD A-> aAb/e C->aC/a D-> aDa/bDb/e

Prepare the consolidated financial statements for the year ended 30 June 2011. On 1 July 2006, Mark Ltd acquired all the share capitall of john Ltd for $700,000. At the date , J

spam messages h= 98%, m= 90%, l= 80% non spam h=12%, m = 8%, l= 5% The organization estimates that 75% of all messages it receives are spam messages. If the cost of not blocking a

S-->AAA|B A-->aA|B B-->epsilon


This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL 2 to discover properties of the recognizable languages.

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled

The path function δ : Q × Σ*→ P(Q) is the extension of δ to strings: Again, this just says that to ?nd the set of states reachable by a path labeled w from a state q in an