Trees and graphs , Theory of Computation

Assignment Help:

Trees and Graphs

Overview: The problems for this assignment should be written up in a Mircosoft Word document. A scanned hand written file for the diagrams is also fine. Be sure to include your name and course number within all of the files that you submit. 

1.Trees 

Read the assigned chapter and notes for Week 5 located in the Course Documents area.  

(a)

Draw a binary tree that produces the inorder traversal for the nodes in the following

order: 721, 174, 788, 828, 61, 292, 986, 3, 394, 154, 86, 229. 

Hint: Y

our tree must a binary tree and not a binary search tree. The tree must produce the inorder traversal for the nodes listed in the order provided above. There are several ways that you can draw the tree for this. I recommend first drawing the nodes and links and then filling in the nodes with the correct values that produces the inorder traversal.


 (b)  Briefly explain some of the differences between a multiway tree and a binary search
 
tree.
2. Graphs 
 
Read the assigned chapter and notes for Week 6 located in the Course Documents area.  

(a)  Draw the adjacency list for the following graph:

 

               594_Trees and Graphs.png

 

(b) Briefly state the differences between a sparse and a dense graph, and the mathematical property for each. Also, explain whether a sparse or dense graph is best implemented using and adjacency matrix and why.


Related Discussions:- Trees and graphs

Abstract model of computation, When we say "solved algorithmically" we are ...

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Venkatesh, What is the arbwnememmsmdbdbfbfjmfksmjejfnfnfnnrndmnfjfjfnrnkrkf...

What is the arbwnememmsmdbdbfbfjmfksmjejfnfnfnnrndmnfjfjfnrnkrkfjfnfmkrjrbfbbfjfnfjruhrvrjkgktithhrbenfkiffnbr ki rnrjjdjrnrk bd n FBC..jcb?????????????????????????????????????????

Convert chomsky normal form into binary form, Suppose G = (N, Σ, P, S) is a...

Suppose G = (N, Σ, P, S) is a reduced grammar (we can certainly reduce G if we haven't already). Our algorithm is as follows: 1. Define maxrhs(G) to be the maximum length of the

Suffix substitution closure, Our primary concern is to obtain a clear chara...

Our primary concern is to obtain a clear characterization of which languages are recognizable by strictly local automata and which aren't. The view of SL2 automata as generators le

Union, Intuitively, closure of SL 2 under intersection is reasonably easy ...

Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a

Decidability, examples of decidable problems

examples of decidable problems

Pumping lemma constant, a) Let n be the pumping lemma constant. Then if L i...

a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le

Alphabets - strings and representation, A finite, nonempty ordered set will...

A finite, nonempty ordered set will be called an alphabet if its elements are symbols, or characters. A finite sequence of symbols from a given alphabet will be called a string ove

Give a strictly 2-local automaton, Let L 3 = {a i bc j | i, j ≥ 0}. Give ...

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd