Transition graph for the automaton, Theory of Computation

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to an accepting node.

This is quick to verify. The path corresponding to any string w leads to a node labeled with hv, Si iff S = Fk(?  w) and that will be a node that is circled iff augmented strings with that set of k-factors (plus v?) satisfy φA. There are a few important things to note about LTk transition graphs. First of all, every LTk automata over a given alphabet shares exactly the same node set and edge set. The only distinction between them is which nodes are accepting nodes and which are not. Secondly, they are invariably inconveniently large. Every LT2 automaton over a two symbol alphabet- pretty much the minimum interesting automaton-will have a transition graph the size of the graph of Figure 1. Fortunately, other than the graph of the example we will not have any need to draw these out. We can reason about the paths through them without ever actually looking at the entire graph.

Posted Date: 3/21/2013 3:24:09 AM | Location : United States







Related Discussions:- Transition graph for the automaton, Assignment Help, Ask Question on Transition graph for the automaton, Get Answer, Expert's Help, Transition graph for the automaton Discussions

Write discussion on Transition graph for the automaton
Your posts are moderated
Related Questions
design a turing machine that accepts the language which consists of even number of zero''s and even number of one''s?

Ask queyystion #Minimum 100 words accepted#

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P

State and Prove the Arden's theorem for Regular Expression

examples of decidable problems

how many pendulum swings will it take to walk across the classroom?

a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le

Define the following concept with an example: a.    Ambiguity in CFG b.    Push-Down Automata c.    Turing Machine

The SL 2 languages are speci?ed with a set of 2-factors in Σ 2 (plus some factors in {?}Σ and some factors in Σ{?} distinguishing symbols that may occur at the beginning and en

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′ 0 . Since they cannot be reached from Q′ 0 there is no path from Q′ 0 to a sta