Transition graph for the automaton, Theory of Computation

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to an accepting node.

This is quick to verify. The path corresponding to any string w leads to a node labeled with hv, Si iff S = Fk(?  w) and that will be a node that is circled iff augmented strings with that set of k-factors (plus v?) satisfy φA. There are a few important things to note about LTk transition graphs. First of all, every LTk automata over a given alphabet shares exactly the same node set and edge set. The only distinction between them is which nodes are accepting nodes and which are not. Secondly, they are invariably inconveniently large. Every LT2 automaton over a two symbol alphabet- pretty much the minimum interesting automaton-will have a transition graph the size of the graph of Figure 1. Fortunately, other than the graph of the example we will not have any need to draw these out. We can reason about the paths through them without ever actually looking at the entire graph.

Posted Date: 3/21/2013 3:24:09 AM | Location : United States







Related Discussions:- Transition graph for the automaton, Assignment Help, Ask Question on Transition graph for the automaton, Get Answer, Expert's Help, Transition graph for the automaton Discussions

Write discussion on Transition graph for the automaton
Your posts are moderated
Related Questions
design an automata for strings having exactly four 1''s

The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive

What is the Best way to write algorithm and construct flow chart? What is Computer? How to construct web page and Designe it?

The fact that SL 2 is closed under intersection but not under union implies that it is not closed under complement since, by DeMorgan's Theorem L 1 ∩ L 2 = We know that

The language accepted by a NFA A = (Q,Σ, δ, q 0 , F) is NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an inpu

The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea


Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica

https://www.google.com/search?q=The+fomula+n%3D%28x%3D0%29%2F%281%3D2%29.The+value+x%3D0+and+is+used+to+stop+the+algerithin.The+calculation+is+reapeated+using+values+of+x%3D0+is+in

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program