Transition graph for the automaton, Theory of Computation

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to an accepting node.

This is quick to verify. The path corresponding to any string w leads to a node labeled with hv, Si iff S = Fk(?  w) and that will be a node that is circled iff augmented strings with that set of k-factors (plus v?) satisfy φA. There are a few important things to note about LTk transition graphs. First of all, every LTk automata over a given alphabet shares exactly the same node set and edge set. The only distinction between them is which nodes are accepting nodes and which are not. Secondly, they are invariably inconveniently large. Every LT2 automaton over a two symbol alphabet- pretty much the minimum interesting automaton-will have a transition graph the size of the graph of Figure 1. Fortunately, other than the graph of the example we will not have any need to draw these out. We can reason about the paths through them without ever actually looking at the entire graph.

Posted Date: 3/21/2013 3:24:09 AM | Location : United States







Related Discussions:- Transition graph for the automaton, Assignment Help, Ask Question on Transition graph for the automaton, Get Answer, Expert's Help, Transition graph for the automaton Discussions

Write discussion on Transition graph for the automaton
Your posts are moderated
Related Questions
turing machine for prime numbers

distinguish between histogram and historigram

Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.

design a tuning machine for penidrome

Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

What is the purpose of GDTR?

Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give

The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in


The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le