Theory of indices, Mathematics

Assignment Help:

In algebra knowing that 23 = 8 is not sufficient. Equally important to know is what would be the result if quantities like 23 . 2-4 . 26 or  37 / 32  are simplified. Mind you, finding the value of quantities like these in most of the problems is not an end in itself. The values of these quantities form an input for solving the problem further. Hence, simplifying these quantities help us to solve more advanced problems. Also that, one feels monotonous if he tries to simplify quantities like these by stating at each step what they literally mean. In this part we learn about the laws of indices and understand the logic behind these concepts.

Law 1

am  x an = am+n, when m and n are positive integers.

By the above definition, am  = a x a ...... to m factors and

                                      an  = a x a .... to n factors.

am x an        = (a x a...to m factors) (a x a...to n factors)

                   =  a x a .................... to m + n  factors

                   =  am+n

Now we extend this logic to negative integers and fractions. First let us consider this for negative integer, that is, m will be replaced by - n. By the definition of
am x an = am+n, we get

                            a-n x an = a-n+n = a0

But we know that a0 = 1

 

Hence, a-n = 1/ an or an = 1/ a-n  .

Similarly, what would be the case if m = p/q and n = p/q. By definition, we have

                            ap/q x ap/q = ap/q +  p/q   = a2p/q

This can be written as  2082_theory of indices.png  This is similar to taking the qth root of a2p. Now what would be the result if we proceed to multiply ap/q, q number of times. That is,

ap/q x ap/q x ap/q  x ap/q ...........  to q factors will be equal to aqp/q

We express this as  (ap/q)q= ap, that is taking the qth root of ap.

Apart from these we look at the meaning of a0. In this case the value of m = 0. Therefore, by definition

                            a0 x an = a0+n   = an

This can be also expressed as   a0 = an /an  = 1.

Now we take a numerical and check the validity of this law.

         26 x  27        =     (2 x 2 ....  to 6 factors)

                                   (2 x 2 ...... to 7 factors)

or,     26+7             =     2 x 2 ....... to (6 + 7) factors

                            =     213           = 8192

or else,

         26 x 27         =     (2 x 2 x 2 x 2 x 2 x 2) x

                                    (2 x 2 x 2 x 2 x 2 x 2 x 2)

                            =     (64)(128)

                            =     8192

(Note: The same logic can be extended to more than two factors also.)

Law 2

am/an = am-n, when m and n are positive integers and m > n.

By definition,    am   = a x a ....... to m factors  and

                      an   = a x a ....... to n factors

Therefore, am / an = 2227_law.png

      = a x a ....... to m - n factors
      = am-n

Now we take a numerical and check the validity of this law.

27

/

24    = 1927_law1.png

      = 2 x 2 x 2......to (7 - 4) factors
      = 2 x 2 x 2......to 3 factors
      = 23    = 8

or else,

27 / 24 = 2174_law2.png

          = 2 x 2 x 2 = 21+1+1  = 23
          = 8

Law 3

(am)n = amn, when m and n are positive integers.

By definition, (am)n   = am x am x am .... to n factors.
    (a x a ... to m factors) ....... to n times
  = a x a ..... to mn factors
  = amn

Now let us look whether this is true for positive fractions. We will keep m as it is and replace n by p/q, where p and q are positive integers. Then we will have

                            (am)n = (am)p/q

Now the qth power of (am)p/q  = {(am)p/q}q

 

= 877_law3.png
= (am)p
= amp

If we take the qth root of the above, we obtain

 

(am)p/q = 888_law4.png

For n being any negative quantity: In this case also m remains the same and n be replaced by - r, where r is positive. Then we have

(am)n

= (am)-r = 2414_law5.png

=

444_law6.png = a-mr

Again replacing -r by n, we obtain amn.

Now with the help of a numerical example let us verify this law.

(24)3 = 24 x 24 x 24
  = 24+4+4
  = 212  =  4096
or else,    
(24)3   = (24) (24) (24 )
  = (2 x 2 x 2 x 2) (2 x 2 x 2 x 2)
    (2 x 2 x 2 x 2)
  = (16) (16) (16)
  = 4096

Related Discussions:- Theory of indices

The perimeter square can be expressed as x + 4 estimate x, The perimeter of...

The perimeter of a square can be expressed as x + 4. If one side of the square is 24, what is the value of x? Since the perimeter of the square is x + 4, and a square has four

Practical geometry, Ask question draw a line parallel to given line xy at a...

Ask question draw a line parallel to given line xy at a distance of 5cm from it #Minimum 100 words accepted#

Shoppers` stop, 3. How are Indian customers visiting Shoppers’ Stop any dif...

3. How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries? 4. How should Shoppers’ Stop develop its demand forecasts?

Integraton, how to find area under a curve

how to find area under a curve

Calculate the volume and surface area of a sphere, Calculate the volume and...

Calculate the volume and surface area of a sphere: Calculate the volume and surface area of a sphere with r = 4".  Be sure to include units in your answer. Solution: V

Proof of various limit properties, PROOF OF VARIOUS LIMIT PROPERTIES In...

PROOF OF VARIOUS LIMIT PROPERTIES In this section we are going to prove several of the fundamental facts and properties about limits which we saw previously. Before proceeding

Quardrilatrel, construct aquadrilaterl PQRSin which pq=3.5cm qr=6.5cm ,p=60...

construct aquadrilaterl PQRSin which pq=3.5cm qr=6.5cm ,p=60 ,q=105 ,s=75

Trigonometry, Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Work Word Problems, Data entry is performed in 2-person teams. Each 2-perso...

Data entry is performed in 2-person teams. Each 2-person team can enter 520 surveys per day. A selection of 7540 surveys must be entered by day''s end. How many total employees, wo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd