The f-wald test, Advanced Statistics

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.

Posted Date: 3/4/2013 7:10:51 AM | Location : United States







Related Discussions:- The f-wald test, Assignment Help, Ask Question on The f-wald test, Get Answer, Expert's Help, The f-wald test Discussions

Write discussion on The f-wald test
Your posts are moderated
Related Questions
The total amount of protein produced by a dairy cow can be estimated from periodic testing of her milk.  The following are the total annual protein production values (lb) for 28 tw

This is an alternative to the Newton-Raphson technique for optimization (finding out the minimum or the maximum) of some function, which includes replacing the matrix of second der

It is the survey which is carried out in Great Britain on a continuous basis since 1971. About 100 000 households are included in this sample every year. The main goal of the surve

Models for the analysis of the survival times, or the time to event, data in which it is expected that a fraction of the subjects will not experience the event of interest. In a cl

Difference between tretment design and experimental design

Latent class analysis is a technique of assessing whether the set of observations including q categorical variables, in specific, binary variables, consists of the number of diffe

This process of estimating from a data set those values lying beyond range of the data. In the regression analysis, for instance, a value of the response variable might be estimate

Coincidences : Astonishing concurrence of the events, perceived as meaningfully related, with no apparent causal connection. Such type of events abounds in everyday life and is oft

Multidimensional scaling (MDS)  is a generic term for a class of techniques or methods which attempt to construct a low-dimensional geometrical representation of the proximity matr