The f-wald test, Advanced Statistics

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.

Posted Date: 3/4/2013 7:10:51 AM | Location : United States







Related Discussions:- The f-wald test, Assignment Help, Ask Question on The f-wald test, Get Answer, Expert's Help, The f-wald test Discussions

Write discussion on The f-wald test
Your posts are moderated
Related Questions
Cluster randomization : The random allocation of the groups or clusters of the individuals in the formation of treatment groups.Eeven though not as statistically ef?cient as the in

The probability distribution which is a linear function of the number of component probability distributions. This type of distributions is used to model the populations thought to

For a career woman, wearing lipstick has become an integral part of her daily life. It is not unusual for a woman to look for a lipstick that will stay on her lips and not smudge

A value related with the square matrix which represents sums and products of its elements. For instance, if the matrix is   then the determinant of A (conventionally written as

Prognostic scoring system is a technique of combining the prognostic information contained in the number of threat factors, in a manner which best predicts each patient's risk of

A term which covers the large number of techniques for the analysis of the multivariate data which have in common the aim to assess whether or not the set of variables distinguish

Cartogram : It is the diagram in which descriptive statistical information is displayed on the geographical map by the means of shading, different symbols or in some other possibly

how to find the PDF and CDF of a gamma random variable with given equation?

Non central distributions is the series of probability distributions each of which is the adaptation of one of the standard sampling distributions like the chi-squared distributio

Bimodal distribution : The probability distribution, or we can simply say the frequency distribution, with two modes. Figure 15 shows the example of each of them