The f-wald test, Advanced Statistics

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.

Posted Date: 3/4/2013 7:10:51 AM | Location : United States







Related Discussions:- The f-wald test, Assignment Help, Ask Question on The f-wald test, Get Answer, Expert's Help, The f-wald test Discussions

Write discussion on The f-wald test
Your posts are moderated
Related Questions
Literature controls : The patients with the disease of interest who have received, in the past, one of two treatments under the investigation, and for whom the results have been pu


Johnson''s Job Sequencing for n jobs and 2 machines

This term sometimes used to describe the extra factor in variance of the sample mean when n sample values are drawn without the replacement from the finite population of size N. Th

1)  Consider an antenna with a pattern: G(θ,φ) = sinn(θ/θ0) cos(θ/θ0)   where θ0 = Π/1.5 (a) What is the 3-dB bandwidth? (b) What is the 10-dB beam width? (c) What is t

a. Explain the meaning of the word non-orthogonal. b. What condition(s) must exist for non-orthogonality to occur? Be specific.

You have probably noticed by now that some of the statements of necessary and sufficient conditions sound more natural than others. For example it seems more natural to express "We


The statistical methods for estimation and inference which are based on a function of sample observations, probability distribution of which does not rely upon a complete speci?cat

It is the survey which is carried out in Great Britain on a continuous basis since 1971. About 100 000 households are included in this sample every year. The main goal of the surve