The f-wald test, Advanced Statistics

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.

Posted Date: 3/4/2013 7:10:51 AM | Location : United States







Related Discussions:- The f-wald test, Assignment Help, Ask Question on The f-wald test, Get Answer, Expert's Help, The f-wald test Discussions

Write discussion on The f-wald test
Your posts are moderated
Related Questions
Linked micro map plot is a plot which provides the graphical overview and the details for spatially indexed statistical summaries. The plot shows the spatial patterns and statisti

The equation linking the height and weight of the children between the ages of 5 and 13 and given as follows   here w is the mean weight in kilograms and h the mean height in

Given: There are 4 jobs and 4 persons. The cost incurred for each person and each job is as follows: Persons Job 1 Job 2 Job 3 Job 4 A 10 9 21 11 B 15 12 25 17 C 12 10 20 12 D 17

Conjugate prior : The distribution for samples from the particular probability distribution such that the posterior distribution at each stage of the sampling is of the identical f

Balanced incomplete repeated measures design (BIRMD): An arrangement of the N randomly selected experimental units and k treatments in which each and every unit receives k1 treatm

Percentile : The set or group of divisions which produce exactly 100 equal parts in the series of continuous values, like blood pressure, height, weight, etc. Hence a person with b

Modern hotels and certain establishments make use of an electronic door lock system. To open a door an electronic card is inserted into a slot. A green light indicates that the doo

Standardise the following arguments, which involve counter-arguments Some educators have argued that the increasing use of the internet by children and teenagers will have a be

Bayes factor : A summary of evidence for the modelM1 against the another modelM0 provided by the set of data D, which can be used in the model selection. Given by the ratio of post

Banach's match-box problem : The person carries two boxes of matches, one in his left and one in his right pocket. At first they comprise N number of matches each. When the person