The complexity ladder, Data Structure & Algorithms

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 

Posted Date: 4/4/2013 6:21:54 AM | Location : United States







Related Discussions:- The complexity ladder, Assignment Help, Ask Question on The complexity ladder, Get Answer, Expert's Help, The complexity ladder Discussions

Write discussion on The complexity ladder
Your posts are moderated
Related Questions
Illustrate an example of algorithm Consider that an algorithm is a sequence of steps, not a program. You might use the same algorithm in different programs, or express same alg

what are the applications of multikey file organization?

Ask question #Minimum 10000 words accepted#

Primitive Data Structure These are the basic structure and are directly operated upon by the machine instructions. These in general have dissimilar representations on different

Board coloring , C/C++ Programming

Thus far, we have been considering sorting depend on single keys. However, in real life applications, we may desire to sort the data on several keys. The simplest instance is that

Determine about the unreachable code assertion An unreachable code assertion is an assertion that is placed at a point in a program that shouldn't be executed under any circum

Demonstrate that Dijkstra's algorithm does not necessarily work if some of the costs are negative by finding a digraph with negative costs (but no negative cost dicircuits) for whi

Graph terminologies : Adjacent vertices: Two vertices a & b are said to be adjacent if there is an edge connecting a & b. For instance, in given Figure, vertices 5 & 4 are adj

What are the Objectives of visual realism applications After studying this unit, you should be able to know specific needs of realism, add realism to pictures by el