The complexity ladder, Data Structure & Algorithms

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 

Posted Date: 4/4/2013 6:21:54 AM | Location : United States







Related Discussions:- The complexity ladder, Assignment Help, Ask Question on The complexity ladder, Get Answer, Expert's Help, The complexity ladder Discussions

Write discussion on The complexity ladder
Your posts are moderated
Related Questions
Determination of Time Complexity The RAM Model The random access model (RAM) of computation was devised through John von Neumann to study algorithms. In computer science,

2. Write a note on i) devising ii) validating and iii) testing of algorithms.

In internal sorting, all of the data to be sorted is obtainable in the high speed main memory of the computer. We will learn the methods of internal sorting which are following:

Which sorting algorithms does not have a worst case running time of  O (n 2 ) ? Merge sort


A binary search tree is used to locate the number 43. Which of the following probe sequences are possible and which are not? Explain. (a) 61 52 14 17 40 43 (b) 2 3 50 40 60 43 (c)

The Euclidean algorithm is an algorithm to decide the greatest common divisor of two positive integers. The greatest common divisor of N and M, in short GCD(M,N), is the largest in

SPARSE MATRICES Matrices along with good number of zero entries are called sparse matrices. Refer the following matrices of Figure (a)

Arrays :- To execute a stack we need a variable called top, that holds the index of the top element of stack and an array to hold the part of the stack.

Linked List  A linked list is a linear collection of data elements called nodes. The linear order is given by pointer. Every node is divided into 2 or more parts.