''t'' distribution, Mathematics

The 't' distribution is a theoretical probability distribution. The 't' distribution is symmetrical, bell-shaped, and to some extent similar to the standard normal curve. It has an additional parameter called degree of freedom and is centered at zero. The shape of 't' distribution changes due to the degree of freedom. Degrees of freedom (df) can be any real number greater than zero. Consider the equation       X + Y = 4. In this equation once we fix the value of X the value of Y is set automatically so the degree of freedom for this equation is said to be one. 

t distribution with n-1 degree of freedom is defined as

 t

2394_t distribution.png

Where,

          348_computation of covariance ungrouped data2.png     =    The sample mean

         m       =    Population mean

         S       =    Sample standard deviation

         n       =    The sample size

 

As shown in the figure below, it is symmetrical like the normal distribution, but its peak is lower than the normal curve and its tail is a little higher above the abscissa than the normal curve.

Figure 

2087_t distribution1.png

The 't' distributions with a smaller degree of freedom have more area in the tails of the distribution than one with a larger degree of freedom. As the degrees of freedom for a 't' distribution get larger and larger, the 't' distribution gets closer and closer to the standard normal distribution. As the df increase, the 't' distribution approaches the standard normal distribution. The standard normal curve is a special case of the 't' distribution when df =   . For practical purposes, the 't' distribution approaches the standard normal distribution relatively quickly, such that when degree of freedom = 30 the two are almost identical. So the best use of 't' distribution is when the degree of freedom is less than 30. It is used instead of the normal distribution whenever the standard deviation is estimated. The 't' distribution has relatively more scores in its tails than does the normal distribution. One more purpose for using 't' distribution is when the population standard deviation is unknown.

Example 

Consider the t-distribution with df = 13. What is the area to the right of 1.771?

From the tables, it can be seen that the area is 0.05.

Posted Date: 9/15/2012 2:06:05 AM | Location : United States







Related Discussions:- ''t'' distribution, Assignment Help, Ask Question on ''t'' distribution, Get Answer, Expert's Help, ''t'' distribution Discussions

Write discussion on ''t'' distribution
Your posts are moderated
Related Questions
Find out the least number of cables required to connect 100 computers to 20 printers to assurance that 20 computers can directly access 20 different printers.  Justify your answer.

The temperature at midnight was 4°F. Through 2 A.M. it had dropped 9°F. What was the temperature at 2 A.M.? If the temperature is only 4° and drops 9°, it goes below zero. It d

Example: Write down the equation of the line which passes through the two points (-2, 4) and (3, -5). Solution At first glance it might not appear which we'll be capable to


6 and 3/8 minus 1 and 3/4

Q. Example of negative number? If you take an elevator 8 stories  down , what would be the opposite of this? The opposite would be that you take the elevator 8 stories  up .

Find the probability of drawing a diamond card in each of the two consecutive draws from a well shuffled pack of cards, if the card drawn is not replaced after the first draw

25 algebraic equations that equal 36

Solve the subsequent IVP and find the interval of validity for the solution xyy' + 4x 2 + y 2 = 0,       y(2) = -7,          x > 0 Solution: Let's first divide on both

Find the sum of first 40 positive integers divisible by 6 also find the sum of first 20 positive integers divisible by 5 or 6. Ans:          No's which are divisible by 6 are