Synchronization, Operating System

Assignment Help:

As we already know, threadsmust ensure consistency; otherwise, race conditions (non-deterministic results) might happen. Now consider the "too much milk problem": two people share the same fridge and must guaran tee that there's always milk, but not too much milk. How can we solve it? First, we consider some important concepts and their de?nitions:

 Mutex: prevents things from operating on the same data at the same time;

 Critical section: a piece of code that only one thread can execute at a time;

 Lock: a mechanism for mutual exclusion; the program locks on entering a critical section, accesses the shared data, and then unlocks. Also, a program waits if it tries to enter a locked section.

 Invariant: something that must always be true when not holding the lock. For the above mentioned problem, we want to ensure some correctness properties. First, we want to guarantee that only one person buys milk when it is need (this is the safety property, aka "noth-ing bad happens"). Also, wewant to ensure that someone does buymilkwhen needed (the progress property, aka "something good eventually happens"). Nowconsider thatwe can use the following atomic operations when writing the code for the problem:

 "leave a note" (equivalent to a lock)

 "remove a note" (equivalent to an unlock)


"don't buy milk if there's a note" (equivalent to a wait)

An atomic operation is an unbreakable operation. Once it has started, no other thread or process can interrupt it until it has ?nished. Our ?rst try could be to use the following code on both threads:

if (no milk && no note) {
leave note;
buy milk;
remove note;
}
Unfortunately, this doesn't work because both threads could simultaneously verify that there's no note and no milk, and then both would simultaneously leave a note, and buy more milk. The problem in this case is that we end up with too much milk (safety property not met).

Now consider our solution #2:

Thread A:
leave note "A";
if (no note "B")
if (no milk)
buy milk;
remove note "A";
Thread B:
leave note "B";
if (no note "A");
if (no milk)
buy milk;
remove note "B";

The problemnowis that if both threads leave notes at the same time, neitherwill ever do anything. Then, we end up with no milk at all, which means that the progress property not met. Now, let's consider an approach that does work:

Thread A
leave note A
while (note B)
do nothing
if (no milk)
buy milk
remove note A
Thread B
leave note B;
if (no note A)
if (no milk)
buy milk;
remove note B;

This approach, unlike the two examples considered on the previous class, does work. However, it is complicated: it is not quick-and-easy to convince yourself that these two sections of code always produce the desired behavior.


Related Discussions:- Synchronization

What are the methods for handling deadlocks, What are the methods for handl...

What are the methods for handling deadlocks? The deadlock problem can be dealt with in one of the three ways: a. Use a protocol to prevent or avoid deadlocks, ensuring that

What is a thread, What is a thread? A thread or else called a lightweig...

What is a thread? A thread or else called a lightweight process (LWP) is a basic unit of CPU utilization, it comprises of a thread id, a program counter, a register set and a s

priority-based scheduling algorithm , Your task is to replace the round ro...

Your task is to replace the round robin CPU scheduling scheme you developed in Practical 6 with a priority-based scheduling algorithm. To simplify matters, you can maintain the ori

Logic gates, Determine the equation for the y and truth table for the circu...

Determine the equation for the y and truth table for the circuits

Error detection in operating system, Q. Error detection in operating system...

Q. Error detection in operating system? Error detection- Error detection take places at both the hardware and software levels. At the hardware level every data transfers must b

Define cpu scheduling, Define CPU scheduling. CPU scheduling is the met...

Define CPU scheduling. CPU scheduling is the method of switching the CPU among several processes. CPU scheduling is the basis of multiprogrammed operating systems. By switching

What is the use of system calls, Q. What is the use of system calls? A...

Q. What is the use of system calls? Answer: System calls permit user-level processes to request services of the operating system.

Define virtual memory, Define Virtual memory Virtual memory is employe...

Define Virtual memory Virtual memory is employed in all major commercial operating systems

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd