State warnock algorithm, Data Structure & Algorithms

Assignment Help:

Warnock's Algorithm

An interesting approach to the hidden-surface problem was presented by Warnock. His method does not try to decide exactly what is happening in the scene but rather just tries to get the display right. As the resolution of the display increases, the amount of work which the algorithm must do to get the scene right also increases, (this is also true for scan-line algorithms). The algorithm divides the screen up into sample areas. In some sample areas it will be easy to decide what to do. If there are no faces within the area, then it is left blank. If the nearest polygon completely covers it, then it can be filled in with the colour of that polygon. If neither of these conditions holds, then the algorithm subdivides the sample area into smaller sample areas and considers each of them in turn. This process is repeated as needed. It stops when the sample area satisfies one of the two simple cases or when the sample area is only a single pixel (which can be given the colour of the foremost polygon). The process can also be allowed to continue to half or quarter pixel-sized sample areas, whose colour may be average over a pixel to provide antialiasing.  

The test for whether a polygon surrounds or is disjoint from the sample area is much like a clipping test to see if the polygon sides cross the sample-area boundaries. Actually the minimax test can be employed to identify many of the disjoint polygons. A simple test for whether a polygon is in front of another is a comparison of the z coordinates of the polygon planes at the corners of the sample area. At each subdivision, information learned in the previous test can be used to simplify the problem. Polygons which are disjoint from the tested sample area will also be disjoint from all of the sub-areas and do not need further testing. Likewise, a polygon which surrounds the sample area will also surround the sub-areas.

 


Related Discussions:- State warnock algorithm

Properties of a red-black tree, Any binary search tree must contain followi...

Any binary search tree must contain following properties to be called as a red-black tree. 1. Each node of a tree should be either red or black. 2. The root node is always bl

Time complexity, The  total  of  time  needed  by  an algorithm to run to i...

The  total  of  time  needed  by  an algorithm to run to its completion is termed as time complexity. The asymptotic running time of an algorithm is given in terms of functions. Th

Maximum numbers of nodes a binary tree of depth d, Maximum numbers of nodes...

Maximum numbers of nodes a binary tree of depth d The maximum numbers of nodes a binary tree of depth d can have is 2 d+1 -1.

Insert function, INSERT FUNCTION /*prototypes of insert & find function...

INSERT FUNCTION /*prototypes of insert & find functions */ list * insert_list(list *); list * find(list *, int); /*definition of  anyinsert function */ list * inser

Explain the concept of colouring, Colouring The use of colours in CAD/C...

Colouring The use of colours in CAD/CAM has two main objectives : facilitate creating geometry and display images. Colours can be used in geometric construction. In this case,

Enumerate about the carrier set members, Enumerate about the carrier set me...

Enumerate about the carrier set members Ruby is written in C, so carrier set members (which is, individual symbols) are implemented as fixed-size arrays of characters (which is

Program to manipulate the data structure, Data Structure and Methods: ...

Data Structure and Methods: Build an array structure to accomodate at least 10 elements. Provide routines for the following: An initializer. A routine to populate (

State cmy model, CMY Model  The cyan, magenta, yellow (CMY) colour mode...

CMY Model  The cyan, magenta, yellow (CMY) colour model is a subtractive model based on the colour absorption properties of paints and inks. As such it has become the standard

Numerical - algorithm, Q. What is the smallest value of n such that an algo...

Q. What is the smallest value of n such that an algorithm whose running time is 100n2 runs faster than an algorithm whose running time is 2n on the same machine.    A n

Branch and bound algorithm, Suppose we have a set of N agents and a set of ...

Suppose we have a set of N agents and a set of N tasks.Each agent can only perform exactly one task and there is a cost associated with each assignment. We would like to find out a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd