Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Warnock's Algorithm
An interesting approach to the hidden-surface problem was presented by Warnock. His method does not try to decide exactly what is happening in the scene but rather just tries to get the display right. As the resolution of the display increases, the amount of work which the algorithm must do to get the scene right also increases, (this is also true for scan-line algorithms). The algorithm divides the screen up into sample areas. In some sample areas it will be easy to decide what to do. If there are no faces within the area, then it is left blank. If the nearest polygon completely covers it, then it can be filled in with the colour of that polygon. If neither of these conditions holds, then the algorithm subdivides the sample area into smaller sample areas and considers each of them in turn. This process is repeated as needed. It stops when the sample area satisfies one of the two simple cases or when the sample area is only a single pixel (which can be given the colour of the foremost polygon). The process can also be allowed to continue to half or quarter pixel-sized sample areas, whose colour may be average over a pixel to provide antialiasing.
The test for whether a polygon surrounds or is disjoint from the sample area is much like a clipping test to see if the polygon sides cross the sample-area boundaries. Actually the minimax test can be employed to identify many of the disjoint polygons. A simple test for whether a polygon is in front of another is a comparison of the z coordinates of the polygon planes at the corners of the sample area. At each subdivision, information learned in the previous test can be used to simplify the problem. Polygons which are disjoint from the tested sample area will also be disjoint from all of the sub-areas and do not need further testing. Likewise, a polygon which surrounds the sample area will also surround the sub-areas.
A graph is a mathematical structure giving of a set of vertexes (v1, v2, v3) and a group of edges (e1, e2, e3). An edge is a set of vertexes. The two vertexes are named the edge en
In a circular linked list There is no beginning and no end.
There are three kinds of tree traversals, namely, Postorder , Preorder and Inorder. Preorder traversal: Each of nodes is visited before its children are visited; first the roo
given the string "Data Structures & , Algorithms", write a program that uses sequential search to return index of ''&''
Q. What do you understand by the term sparse matrix? How sparse matrix is stored in the memory of a computer? Write down the function to find out the transpose of a sparse matrix u
Q. Define the sparse metrics and also explain the representation of a 4X4 matrix using linked list. Ans: A matrix in which number of zero entries is quite h
Explain the Interfaces in Ruby Recall that in object-oriented programming, an interface is a collection of abstract operations that cannot be instantiated. Even though Ruby i
Evaluate the frequency counts for all statements in the following given program segment. for (i=1; i ≤ n; i ++) for (j = 1; j ≤ i; j++) for (k =1; k ≤ j; k++) y ++;
Using the cohen sutherland. Algorithm. Find the visible portion of the line P(40,80) Q(120,30) inside the window is defined as ABCD A(20,20),B(60,20),C(60,40)and D(20,40)
Conversion of Forest into Tree A binary tree may be used to show an entire forest, since the next pointer in the root of a tree can be used to point to the next tree of the for
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd