Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Warnock's Algorithm
An interesting approach to the hidden-surface problem was presented by Warnock. His method does not try to decide exactly what is happening in the scene but rather just tries to get the display right. As the resolution of the display increases, the amount of work which the algorithm must do to get the scene right also increases, (this is also true for scan-line algorithms). The algorithm divides the screen up into sample areas. In some sample areas it will be easy to decide what to do. If there are no faces within the area, then it is left blank. If the nearest polygon completely covers it, then it can be filled in with the colour of that polygon. If neither of these conditions holds, then the algorithm subdivides the sample area into smaller sample areas and considers each of them in turn. This process is repeated as needed. It stops when the sample area satisfies one of the two simple cases or when the sample area is only a single pixel (which can be given the colour of the foremost polygon). The process can also be allowed to continue to half or quarter pixel-sized sample areas, whose colour may be average over a pixel to provide antialiasing.
The test for whether a polygon surrounds or is disjoint from the sample area is much like a clipping test to see if the polygon sides cross the sample-area boundaries. Actually the minimax test can be employed to identify many of the disjoint polygons. A simple test for whether a polygon is in front of another is a comparison of the z coordinates of the polygon planes at the corners of the sample area. At each subdivision, information learned in the previous test can be used to simplify the problem. Polygons which are disjoint from the tested sample area will also be disjoint from all of the sub-areas and do not need further testing. Likewise, a polygon which surrounds the sample area will also surround the sub-areas.
Describe Binary Search Tree (BST)? Make a BST for the given sequence of numbers. 45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48 Traverse the obtained tree in Preorder, Inord
Compare zero-address, one-address, two-address, and three-address machines by writing programs to compute: Y = (A – B X C) / (D + E X F) for each of the four machines. The inst
Prim's algorithm employs the concept of sets. Rather than processing the graph by sorted order of edges, this algorithm processes the edges within the graph randomly by building up
What do you mean by hashing? Hashing gives the direct access of record from the file no matter where the record is in the file. This is possible with the help of a hashing func
(1) Sort a list of distinct numbers in ascending order, using the following divide- and-conquer strategy (Quicksort): divide the list of numbers into two lists: one that contains a
lower triangular matrix and upper triangular matrix
How to convert infix postfix and prefix??
Various graph traversal schemes Graph Traversal Scheme. In many problems we wish to investigate all the vertices in a graph in some systematic order. In graph we often do no
Which sorting algorithm is easily adaptable to singly linked lists? Simple Insertion sor t is easily adabtable to singly linked list.
Linear search is not the most efficient way to search an item within a collection of items. Though, it is extremely simple to implement. Furthermore, if the array elements are arra
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: info@expertsmind.com
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd