Stacks, Data Structure & Algorithms

Assignment Help:

Q. Explain what are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not well formed.

 

Ans:

The stack is a data structure that organizes data in a similar way one organizes a pile of coins. The new coin is all the time placed on the top and the oldest is on the bottom of the stack. When we are accessing coins, the last coin on the pile is the first coin which was removed from the stack. If we want to reach the third coin, we should remove the first two coins from the top of the stack first so that the third coin comes on the top of the stack and we can easily remove it. There is no way at all to remove a coin from anywhere other than the top of the stack.

A stack is useful whenever we need to store data and retrieve data in last in, first out order. Let us take an example the computer processes instructions using a stack in which the next instruction to execute is at the top of the stack.

To determine whether an expression is well parentheses or not:- the two conditions should be fulfilled while pushing an expression into a stack. At first, whenever an opening bracket is pushed inside a stack, there should be an occurrence a closing bracket before we reach the last symbol. Whenever a closing bracket is encountered, the top of the stack is popped until the opening bracket is popped out and discarded. If no such type of opening bracket is found and stack is made empty, then this means that the expression is not well parentheses designed.

An algorithm to check that whether an expression is correctly parenthized or not is written below:

flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

{

if(symbol= '( ' or symbol= '[' or symbol = '{' )

push(symbol,stack);

else  if(symbol= ') ' or symbol= '[' or symbol =

'{' )

if stack is empty flag=false;

printf("More right parenthesis than left

parenthises");

else c=pop(stack);

match c and the input symbol; If not matched

{     flag=false;

printf("Mismatched

parenthesis");

}

Read the next input symbol;

}

if stack is empty then

printf("parentheses are balanced properly");

else

printf(" More number of left parentheses than right parentheses");

 


Related Discussions:- Stacks

Graphs with negative edge costs, We have discussed that the above Dijkstra'...

We have discussed that the above Dijkstra's single source shortest-path algorithm works for graphs along with non-negative edges (like road networks). Given two scenarios can emerg

Mathematical-model with a collection of operations, A mathematical-model wi...

A mathematical-model with a collection of operations described on that model is known as??? Abstract Data Type

Recursive function , Q. Write down the recursive function to count the numb...

Q. Write down the recursive function to count the number of the nodes in the binary tree.    A n s . R ecursive Function to count no. of Nodes in Binary Tree is writt

Computational complexity, Generally, Computational complexity of algorithms...

Generally, Computational complexity of algorithms are referred to through space complexity (space needed for running program) and time complexity (time needed for running the progr

Limitation of binary search, Limitation of Binary Search: - (i)  The co...

Limitation of Binary Search: - (i)  The complexity of Binary search is O (log2 n). The complexity is similar irrespective of the position of the element, even if it is not pres

Graph, explain the prims''s algorithm with suitable example?

explain the prims''s algorithm with suitable example?

Complexity, Complexity : How do the resource needs of a program or algorith...

Complexity : How do the resource needs of a program or algorithm scale (the growth of resource requirements as a function of input). In other words, what happens with the performan

High-level and bubble algorithm , 1. Give both a high-level algorithm and a...

1. Give both a high-level algorithm and an implementation (\bubble diagram") of a Turing machine for the language in Exercise 3.8 (b) on page 160. Use the ' notation to show the co

Complexity of an algorithm, What do you mean by complexity of an algorithm?...

What do you mean by complexity of an algorithm? The complexity of an algorithm M is the function f(n) which gives the running time and/or storage space need of the algorithm i

Explain in detail about the ruby arrays, Explain in detail about the Ruby a...

Explain in detail about the Ruby arrays Ruby arrays have many interesting and powerful methods. Besides indexing operations which go well beyond those discussed above, arrays h

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd