Stacks, Data Structure & Algorithms

Assignment Help:

Q. Explain what are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not well formed.

 

Ans:

The stack is a data structure that organizes data in a similar way one organizes a pile of coins. The new coin is all the time placed on the top and the oldest is on the bottom of the stack. When we are accessing coins, the last coin on the pile is the first coin which was removed from the stack. If we want to reach the third coin, we should remove the first two coins from the top of the stack first so that the third coin comes on the top of the stack and we can easily remove it. There is no way at all to remove a coin from anywhere other than the top of the stack.

A stack is useful whenever we need to store data and retrieve data in last in, first out order. Let us take an example the computer processes instructions using a stack in which the next instruction to execute is at the top of the stack.

To determine whether an expression is well parentheses or not:- the two conditions should be fulfilled while pushing an expression into a stack. At first, whenever an opening bracket is pushed inside a stack, there should be an occurrence a closing bracket before we reach the last symbol. Whenever a closing bracket is encountered, the top of the stack is popped until the opening bracket is popped out and discarded. If no such type of opening bracket is found and stack is made empty, then this means that the expression is not well parentheses designed.

An algorithm to check that whether an expression is correctly parenthized or not is written below:

flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

{

if(symbol= '( ' or symbol= '[' or symbol = '{' )

push(symbol,stack);

else  if(symbol= ') ' or symbol= '[' or symbol =

'{' )

if stack is empty flag=false;

printf("More right parenthesis than left

parenthises");

else c=pop(stack);

match c and the input symbol; If not matched

{     flag=false;

printf("Mismatched

parenthesis");

}

Read the next input symbol;

}

if stack is empty then

printf("parentheses are balanced properly");

else

printf(" More number of left parentheses than right parentheses");

 


Related Discussions:- Stacks

find shortest path from a to z using dijkstra''s algorithm., Q.  In the gi...

Q.  In the given figure find the shortest path from A to Z using Dijkstra's Algorithm.    Ans: 1.  P=φ;  T={A,B,C,D,E,F,G,H,I,J,K,L,M,Z} Let L(A)

Complexity classes, Complexity classes All decision problems fall in se...

Complexity classes All decision problems fall in sets of comparable complexity, called as complexity classes. The complexity class P is the set of decision problems which ca

Amortized algorithm analysis, In the amortized analysis, the time needed to...

In the amortized analysis, the time needed to perform a set of operations is the average of all operations performed. Amortized analysis considers as a long sequence of operations

Graph, For the following graph find the adjacency matrix and adjacency list...

For the following graph find the adjacency matrix and adjacency list representation of the graph.

Algorithm, write an algorithm given each students name and grade points for...

write an algorithm given each students name and grade points for six courses.find his grade point average and group students into the gpa groups 3.5

Flowchart, conversion of centrigral to frahenhit

conversion of centrigral to frahenhit

Sequential files, In this section, we will discuss about Sequential file or...

In this section, we will discuss about Sequential file organization. Sequential files have data records stored in a particular sequence. A sequentially organized file might be stor

Siso-4bit register, explain working of siso-register to store 1011 and show...

explain working of siso-register to store 1011 and show timing diagram &table

Postorder traversal of a binary tree, Postorder traversal of a binary tree ...

Postorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; }; postorder(struct NODE

Recursion, differences between direct and indirect recursion

differences between direct and indirect recursion

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd