Sparse matrix, Data Structure & Algorithms

Q. Define a sparse matrix. Explain different types of sparse matrices? Show how a triangular array is stored in memory. Evaluate the method to calculate address of any element ajk of a matrix stored in memory.                                                                                                                             

Ans.

Sparse Matrix

A m x n matrix A is said to be sparse if MOST of its elements are zero. A matrix that is not sparse is called dense matrix.

Types of Sparse matrix

1)            Diagonal Matrix

488_Diagonal matrix.png 

This is the square matrix where the non zero elements are only where row = col ie at

diagonal.

2)  Tridiagonal Matrix

897_tridiagonal matrix.png

In  this  square  matrix  all  elements  other  than  those  on  and  on  the  diagonals immediately above and below this one are zero.

Triangular Matrices

Tiangular Matrices is of 2 types:

a)  Lower triangular b)  Upper triangular

720_Diagonal matrix1.png

In an n*n lower triangular matrix A, row 1 has one non zero element, row 2 has 2,

....., and row n has n. whereas, in an n*n upper triangular matrix A, row 1 has n non zero elements, row 2 has n-1 ,.... , and row n has 1. In both the cases, the total number of non-zero elements is n(n+1)/2.

Both of these matrices can be represented using an one dimensional array la of size n(n+1)/2.

Consider lower triangular matrix L. the elements can be mapped by rows or by columns.

In a row-wise mapping, the element L[i,j], i>=j, is preceded by ∑k  for k=1 to i-1, elements that are in row 1 through i-1, and j-1 such elements from row i. the total number of elements that precede it in a row-wise mapping is

1620_Diagonal matrix2.png

 

This expression also gives the position l[i,j] in la.

Method  to  calculate  address  of  any  element  ajk   of  a  matrix     stored  in memory.

Let us consider 2 dimensional array a of size m*n further consider that the lower bound for the row index is lbr and for column index is lbc.

Like linear array, system keeps track of the first element only i.e. , the base address of the array.

Using this base address, the computer computes the address of the element in the ith row and jth column i.e. loc(a[i][j]), using the following formulae:

Column major order:-

Loc (a[i][j]) = base (a) + w [m (j - lbc) + ( i - lbr)] in general

Row major order:-

Loc (a[i][j]) = base (a) + w [n(i - lbr) + ( j - lbc)]            in general

where w is number of bytes per storage location for any one element of the array.

Posted Date: 7/13/2012 1:11:15 AM | Location : United States







Related Discussions:- Sparse matrix, Assignment Help, Ask Question on Sparse matrix, Get Answer, Expert's Help, Sparse matrix Discussions

Write discussion on Sparse matrix
Your posts are moderated
Related Questions
What are the Objectives of visual realism applications After studying this unit, you should be able to know specific needs of realism, add realism to pictures by el

Q. Make the 11 item hash table resulting from hashing the given keys: 12, 44, 13, 88, 23, 94, 11, 39, 20, 16 and 5 by making use of the hash function h(i) = (2i+5) mod 11.

Illustrate the intervals in mathematics Carrier set of a Range of T is the set of all sets of values v ∈ T such that for some start value s ∈ T and end value e ∈ T, either s ≤

Unlike a binary-tree, each node of a B-tree may have a number of keys and children. The keys are stored or saved in non-decreasing order. Each key has an related child that is the

What data structure would you mostly likely see in a nonrecursive execution of a recursive algorithm? Stack

Write an algorithm for multiplication of two sparse matrices using Linked Lists.

infix to revrse polish

You need to implement a function which will write out a given user-specified memory location to disk in base 10. That means that you have to convert the large number data structure

Example: (Single rotation into AVL tree, while a new node is inserted into the AVL tree (LL Rotation)) Figure: LL Rotation The rectangles marked A, B & C are trees

A useful tool which is used for specifying the logical properties of a data type is called the abstract data type or ADT. The term "abstract data type" refers to the fundamental ma