Sparse matrix, Data Structure & Algorithms

Q. Define a sparse matrix. Explain different types of sparse matrices? Show how a triangular array is stored in memory. Evaluate the method to calculate address of any element ajk of a matrix stored in memory.                                                                                                                             

Ans.

Sparse Matrix

A m x n matrix A is said to be sparse if MOST of its elements are zero. A matrix that is not sparse is called dense matrix.

Types of Sparse matrix

1)            Diagonal Matrix

488_Diagonal matrix.png 

This is the square matrix where the non zero elements are only where row = col ie at

diagonal.

2)  Tridiagonal Matrix

897_tridiagonal matrix.png

In  this  square  matrix  all  elements  other  than  those  on  and  on  the  diagonals immediately above and below this one are zero.

Triangular Matrices

Tiangular Matrices is of 2 types:

a)  Lower triangular b)  Upper triangular

720_Diagonal matrix1.png

In an n*n lower triangular matrix A, row 1 has one non zero element, row 2 has 2,

....., and row n has n. whereas, in an n*n upper triangular matrix A, row 1 has n non zero elements, row 2 has n-1 ,.... , and row n has 1. In both the cases, the total number of non-zero elements is n(n+1)/2.

Both of these matrices can be represented using an one dimensional array la of size n(n+1)/2.

Consider lower triangular matrix L. the elements can be mapped by rows or by columns.

In a row-wise mapping, the element L[i,j], i>=j, is preceded by ∑k  for k=1 to i-1, elements that are in row 1 through i-1, and j-1 such elements from row i. the total number of elements that precede it in a row-wise mapping is

1620_Diagonal matrix2.png

 

This expression also gives the position l[i,j] in la.

Method  to  calculate  address  of  any  element  ajk   of  a  matrix     stored  in memory.

Let us consider 2 dimensional array a of size m*n further consider that the lower bound for the row index is lbr and for column index is lbc.

Like linear array, system keeps track of the first element only i.e. , the base address of the array.

Using this base address, the computer computes the address of the element in the ith row and jth column i.e. loc(a[i][j]), using the following formulae:

Column major order:-

Loc (a[i][j]) = base (a) + w [m (j - lbc) + ( i - lbr)] in general

Row major order:-

Loc (a[i][j]) = base (a) + w [n(i - lbr) + ( j - lbc)]            in general

where w is number of bytes per storage location for any one element of the array.

Posted Date: 7/13/2012 1:11:15 AM | Location : United States







Related Discussions:- Sparse matrix, Assignment Help, Ask Question on Sparse matrix, Get Answer, Expert's Help, Sparse matrix Discussions

Write discussion on Sparse matrix
Your posts are moderated
Related Questions
Abstract Data Types :- A useful tool for specifying the logical properties of a data type is the abstract data type or ADT. The term "abstract data type" refers to the basic mathem

Ask question #explain it beriflyMinimum 100 words accepted#

D elete a specific Node from Double Linked List as follows DELETEDBL(INFO, FORW, BACK, START, AVAIL,LOC) 1. [Delete Node] Set FORW [ BACK [LOC]]:= FORW[LOC]& BACK [FORW[

Taking a suitable example explains how a general tree can be shown as a Binary Tree. Conversion of general trees to binary trees: A general tree can be changed into an equiv

Importance of Object-Oriented over java Java is basically based on OOP notions of classes and objects. Java uses a formal OOP type system that should be obeyed at compile-t

Merging two sequence using CREW merge

In-order Traversal  This process when executed iteratively also needs a stack and a Boolean to prevent the implementation from traversing any portion of a tree twice. The gener


implement multiple stack in single dimensionl array.write algorithms for various stack operation for them

What data structure would you mostly likely see in a nonrecursive execution of a recursive algorithm? Stack