Sparse matrix, Data Structure & Algorithms

Q. Define a sparse matrix. Explain different types of sparse matrices? Show how a triangular array is stored in memory. Evaluate the method to calculate address of any element ajk of a matrix stored in memory.                                                                                                                             

Ans.

Sparse Matrix

A m x n matrix A is said to be sparse if MOST of its elements are zero. A matrix that is not sparse is called dense matrix.

Types of Sparse matrix

1)            Diagonal Matrix

488_Diagonal matrix.png 

This is the square matrix where the non zero elements are only where row = col ie at

diagonal.

2)  Tridiagonal Matrix

897_tridiagonal matrix.png

In  this  square  matrix  all  elements  other  than  those  on  and  on  the  diagonals immediately above and below this one are zero.

Triangular Matrices

Tiangular Matrices is of 2 types:

a)  Lower triangular b)  Upper triangular

720_Diagonal matrix1.png

In an n*n lower triangular matrix A, row 1 has one non zero element, row 2 has 2,

....., and row n has n. whereas, in an n*n upper triangular matrix A, row 1 has n non zero elements, row 2 has n-1 ,.... , and row n has 1. In both the cases, the total number of non-zero elements is n(n+1)/2.

Both of these matrices can be represented using an one dimensional array la of size n(n+1)/2.

Consider lower triangular matrix L. the elements can be mapped by rows or by columns.

In a row-wise mapping, the element L[i,j], i>=j, is preceded by ∑k  for k=1 to i-1, elements that are in row 1 through i-1, and j-1 such elements from row i. the total number of elements that precede it in a row-wise mapping is

1620_Diagonal matrix2.png

 

This expression also gives the position l[i,j] in la.

Method  to  calculate  address  of  any  element  ajk   of  a  matrix     stored  in memory.

Let us consider 2 dimensional array a of size m*n further consider that the lower bound for the row index is lbr and for column index is lbc.

Like linear array, system keeps track of the first element only i.e. , the base address of the array.

Using this base address, the computer computes the address of the element in the ith row and jth column i.e. loc(a[i][j]), using the following formulae:

Column major order:-

Loc (a[i][j]) = base (a) + w [m (j - lbc) + ( i - lbr)] in general

Row major order:-

Loc (a[i][j]) = base (a) + w [n(i - lbr) + ( j - lbc)]            in general

where w is number of bytes per storage location for any one element of the array.

Posted Date: 7/13/2012 1:11:15 AM | Location : United States







Related Discussions:- Sparse matrix, Assignment Help, Ask Question on Sparse matrix, Get Answer, Expert's Help, Sparse matrix Discussions

Write discussion on Sparse matrix
Your posts are moderated
Related Questions
Midsquare Method :- this operates in 2 steps. In the first step the square of the key value K is taken. In the 2nd step, the hash value is obtained by deleting digits from ends of


Q. Create a heap with the given list of keys: 8, 20, 9, 4, 15, 10, 7, 22, 3, 12                                                  Ans: Creation

Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2


Difference among Prism's and Kruskal's Algorithm In Kruskal's algorithm, the set A is a forest. The safe edge added to A is always a least-weight edge in the paragraph that lin


Multidimensional array: Multidimensional arrays can be defined as "arrays of arrays". For example, a bidimensional array can be imagined as a bidimensional table made of elements,

1. Apply the variant Breadth-First Search algorithm as shown in Figure 2 to the attached graph. This variant is used for computing the shortest distance to each vertex from the sta

Any binary search tree must contain following properties to be called as a red-black tree. 1. Each node of a tree should be either red or black. 2. The root node is always bl