| Script 1.    First of all let us draw   the lines x+y=50 and 3x+y = 90 using suitable points on the graphs. 2.   The lines intersect at   the point 20,30 3.   Now shade the region of   intersection of the two lines. 4.   The shaded region gives   the feasible region determined by the constraints 5.   Hence OABC is the   bounded region 6.   Therefore we use corner   point method to calculate the maximum and minimum values 7.   Vertices of feasible   region are 8.   Now let us find the   maximum and minimum values 9.   For the Corner point O   (0,0) 10.                  For the corner point Corner point  A(30,0) 11. For the corner point B   (20,50) 12.                  C(0,50) 13.                  Hence the minimum value of Z is ) at (0,0) and 14.                  Maximum value of Z is at (30,0)   | Solution                                       7.O(0,0), A(30,0), B(20,30), C(0,50)       60(00+15(0)   = =0 is minimum   60(30)   + 15(0)=1800 is maximum 60(20)+15(50)   = 1650   60(0)+15(50)=750                 |