Single point perspective transformation, Computer Graphics

Assignment Help:

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]

=(-d,0,0)+t[x+d,y,z]

=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.

 

Hence, x'=-d+t*(x+d)=0

         y'=t*.y=y.d/(x+d)

         z'=t*.z=z.d/(x+d)

Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].


Related Discussions:- Single point perspective transformation

Identify what the use of homogenous co-ordinates, 1. Why are homogeneous co...

1. Why are homogeneous co-ordinates utilized in computer vision? I want to identify what the use of homogenous co-ordinates makes possible in terms of camera models. 2. Consider

Transformation for 3-d rotation, Transformation for 3-D Rotation Rotat...

Transformation for 3-D Rotation Rotation in 3-dimensions is considerably more complicated then rotation in 2-dimensions. In 2-Dimentional, a rotation is prescribed via an angl

Horizontal retrace - display devices, Horizontal retrace - Display Devices ...

Horizontal retrace - Display Devices In a refresh CRT monitor, the time it takes for an electron beam to return to the left most point on the next horizontal line after refresh

Classic applications of digital video, The table as given below demonstrate...

The table as given below demonstrates possible values of such parameters for classic applications of digital video. Application                  Frame rate                  Dime

Dda and bresenhem line drawing algorithm, when dda algorithm is more effici...

when dda algorithm is more efficient than bresenhem line drawing algorithm

Explain clearly the condense editing using examples, QUESTION 1. Creat...

QUESTION 1. Create a COMPLETE storyboard for a movie of 2 minutes duration on ONE of the following subject: a. Poverty b. Global Warming c. Smoking d. Drugs e. D

Identify design patterns, Mauri Ltd has just acquired a new stock manageme...

Mauri Ltd has just acquired a new stock management system and the source codes (PhP5) also have been delivered. The coding style is fully object-oriented. The company has been u

Three dimensional transformations, Three Dimensional Transformations A ...

Three Dimensional Transformations A 3D geometric transformation is used extensively in object modelling and rendering.2D transformations are naturally extended to 3D situations

Put the system of a geometric data table for a 3d rectangle, Put the system...

Put the system of a geometric data table for a 3d rectangle. Solution : Vertex Table Edge Table Polygon Surface Table

Animate 3d articulated character - forward kinematic method, In this progra...

In this programming assignment, you will animate and pose 3D articulated characters by implementing forward and inverse kinematic methods. You should be able to animate character j

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd