Single point perspective transformation, Computer Graphics

Assignment Help:

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]

=(-d,0,0)+t[x+d,y,z]

=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.

 

Hence, x'=-d+t*(x+d)=0

         y'=t*.y=y.d/(x+d)

         z'=t*.z=z.d/(x+d)

Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].


Related Discussions:- Single point perspective transformation

Explain the fundamental differences of tracking and leading, Question 1: ...

Question 1: (a)Using your awareness of typography and design, make a new logo manually for one of the following. The logo should compulsorily consist of the name and may or may

Explain difference between impact and non-impact printers, What is the diff...

What is the difference between impact and non-impact printers?  Impact printer press produced character faces against an inked ribbon on to the paper. A line printer and dot-ma

Introduction of 2-d and 3-d transformations, Introduction of 2-D and 3-D  ...

Introduction of 2-D and 3-D  Transformations In this, the subsequent things have been discussed in detail as given below: Different geometric transformations as transla

Polygon representation methods - boundary representations, Polygon represen...

Polygon representation methods - Boundary representations Boundary representations: now the 3-D object is shown as a set of surfaces which separate the object interior from

Write short notes on active and passive transformations, Write short notes ...

Write short notes on active and passive transformations?  In the active transformation the points x and x| show different coordinates of the similar coordinate system. Here all

Cohen sutherland line clippings algorithm, Cohen Sutherland Line Clippings ...

Cohen Sutherland Line Clippings Algorithm The clipping problem is identified by dividing the region surrounding the window area into four segments Up as U, Down as D, Left as

What is shearing, What is shearing?  The shearing transformation actua...

What is shearing?  The shearing transformation actually slants the object with the X direction or the Y direction as needed.ie; this transformation slants the shape of an obje

How does resolution of a system influence graphic display, 1. How does the...

1. How does the resolution of a system influence graphic display? Ans. In a high resolution system the adjacent pixels are so near spaced such approximated line-pixels lie extr

Describe the wiggler function in animation help, Question 1: (a) Descri...

Question 1: (a) Describe the term Mask Path and give brief steps how you could change a rectangle into a triangle with respect to time in AE CS3. (b) Expressions are ve

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd