Single point perspective transformation, Computer Graphics

Assignment Help:

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]

=(-d,0,0)+t[x+d,y,z]

=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.

 

Hence, x'=-d+t*(x+d)=0

         y'=t*.y=y.d/(x+d)

         z'=t*.z=z.d/(x+d)

Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].


Related Discussions:- Single point perspective transformation

Types of animation, Types of Animation: -          Procedural Animation...

Types of Animation: -          Procedural Animation    -          Representational Animation -          Stochastic Animation                      -          Behavioura

Adobe photoshop - softwares for computer animation, Adobe Photoshop - Softw...

Adobe Photoshop - Softwares for computer animation Whereas Adobe Photoshop is not a computer animation application, this is one of the top of the line graphics programs. This

Transform from the world to viewing coordinate system, To transform from th...

To transform from the world coordinate system to viewing coordinate system you need to perform the following operations.  a)  Translate the viewing coordinate origin to the worl

Types of animation systems - computer animation, Types of Animation Systems...

Types of Animation Systems - Computer Animation We have discussed above about the sequencing of animation is helpful in developing any animation. Such sequencing is more or le

Refresh buffer, what is refresh buffer/ identify the content and organisati...

what is refresh buffer/ identify the content and organisation of the refresh buffer for the case of raster display and vector display.

Uses for gif and jpeg files, Uses for GIF and JPEG Files: Microsoft I...

Uses for GIF and JPEG Files: Microsoft Internet Explorer, Netscape Navigator and most the other browsers maintain both JPEG and GIF graphics. Theoretically, you could util

Normalization transformation, Find the normalization transformation N, whic...

Find the normalization transformation N, which uses the rectangle W(1, 1); X(5, 3); Y(4, 5) and Z(0, 3) as a window and the normalized deice screen as viewpoint.

Handling mouse input, When you set up your project, create the class as an ...

When you set up your project, create the class as an "ACM Graphics Program", rather than a plain class. This will perform the necessary preparations for you to use mouse input in y

Briefly explain how you could create the gun barrel effect, Question 1: ...

Question 1: (a) Describe what you understand by Rotoscoping in Graphic effects. Give details how Rotoscoping could be achieved in After Effects CS3. (b) Using one algorithm

2-d viewing and clipping - raster graphics and clipping, 2-D Viewing and C...

2-D Viewing and Clipping - Raster Graphics and  Clipping In the previous two units of this block, we illustrated the basic elements of computer graphics, that is, the hardware

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd