Single point perspective transformation, Computer Graphics

Assignment Help:

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]

=(-d,0,0)+t[x+d,y,z]

=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.

 

Hence, x'=-d+t*(x+d)=0

         y'=t*.y=y.d/(x+d)

         z'=t*.z=z.d/(x+d)

Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].


Related Discussions:- Single point perspective transformation

Interfacing lcd liquid crystal display, Main Objectives: Interfacing...

Main Objectives: Interfacing LCD to the Micro-controller (PIC18F4520) Programming LCD by using C- language via MPLAB Sending data or command to the LCD Component

Time delay and busy flag method, 1. Using a time Delay Method The delay...

1. Using a time Delay Method The delay required between issuing each character to the LCD is about 5-10ms (it's simply known as DELAY). When programming an LCD, a long delay is

Parameterized systems - computer animation, Parameterized Systems - Compute...

Parameterized Systems - Computer Animation Parameterized Systems is the systems which permit objects motion features to be given as part of the object descriptions. The adjus

Raster & Vector display, what is refresh buffer/ identify the content and o...

what is refresh buffer/ identify the content and organisation of the refresh buffer for the case of raster display and vector display.

Image precision, what is image precision in computer graphics

what is image precision in computer graphics

Advantage of initiating the matrix form of translation, Normal 0 ...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

Objectives of curves and surfaces - modeling and rendering, Objectives of C...

Objectives of Curves and surfaces - modeling and rendering After going through the section, you should be capable to: Implement the methods utilized to represent a pol

Define resolution, What is Resolution, how to adjust it.  Resolution: T...

What is Resolution, how to adjust it.  Resolution: The maximum number of points that can be displayed without overlap on a CRT is referred to as the resolution . A more prec

Write a code to generate a composite matrix, Write a code to generate a com...

Write a code to generate a composite matrix for general 3D rotation matrix.  Test your code and rotate continuously a cube about an axis.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd