Single point perspective transformation, Computer Graphics

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0



=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.


Hence, x'=-d+t*(x+d)=0



Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].

Posted Date: 4/4/2013 2:59:23 AM | Location : United States

Related Discussions:- Single point perspective transformation, Assignment Help, Ask Question on Single point perspective transformation, Get Answer, Expert's Help, Single point perspective transformation Discussions

Write discussion on Single point perspective transformation
Your posts are moderated
Related Questions
Orthographic and Oblique Projection - Viewing Transformation Orthographic projection is the easiest form of parallel projection that is commonly utilized for engineering drawi

What is orthographic oblique projection?  When the direction of the projection is not normal (not perpendicular) to the view plane then the projection is called as oblique proj

Poser - software to generate computer animations Poser: Poser through Curious Labs Creates 3-dimentaional complex models which you can view from any angle, distance o

Bezier Surfaces - Modeling and Rendering Two sets of Bezier curve can be utilized to design an object surface by identifying by an input mesh of control points. The Bézier su

Animation, Video and Digital Movies : These are sequences of bitmapped graphic scenes or frames, quickly played back. But animations can also be made inside the authoring system t

Cathode Ray Tube - Graphics Hardware Cathode Ray Tube: this is a refreshing display device. The idea of a refreshing display is depicted pictorially is given as: In fact

What is the difference between odd-even rule and non-zero winding number rule to identify interior regions of an object? Develop an algorithm for a recursive method for filling a 4

Benefits of Computer Simulation The benefit of Simulation is: even for simply solvable linear systems: a uniform model execution technique can be utilized to resolve a large v