Single point perspective transformation, Computer Graphics

Assignment Help:

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]

=(-d,0,0)+t[x+d,y,z]

=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.

 

Hence, x'=-d+t*(x+d)=0

         y'=t*.y=y.d/(x+d)

         z'=t*.z=z.d/(x+d)

Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].


Related Discussions:- Single point perspective transformation

Explain the bresenham line generation algorithm, 1. Explain the Bresenham ...

1. Explain the Bresenham line generation algorithm via digitizing the line with end  points as (15, 5) and also (25,13). Ans. Now we are utilizing the Bresenham line generati

Determine the refresh rate in the raster system, Example 1 : Determine the ...

Example 1 : Determine the number of memory bits essential for three bit plane frame buffer for the 512 x 512 raster Solution: Whole memory bits needed are 3 x 512 x 512 = 786,

Polygonalization of the surface, Remember in polygonalization of the surfac...

Remember in polygonalization of the surface, following rules must be followed. Any two polygons  (i)  share a common edge,   (ii)  Share a common vertext,  (iii)  Arc disj

Assumptions for area subdivision method, Assumptions for Area Subdivision M...

Assumptions for Area Subdivision Method a) ¾   Plane of projection is z=0 plane b) ¾ Orthographic parallel projections c) ¾   Direction of projection as d= (0,0,-1) d

Mpeg-1, MPEG-1 : MPEG-1 that is Moving Picture Experts Group format 1 is a...

MPEG-1 : MPEG-1 that is Moving Picture Experts Group format 1 is an industry standard encoding format that is broadly used. Its normal format is a frame size of about 352 x 240 an

Presentation graphics-introduction to computer graphics, Presentation Graph...

Presentation Graphics The instant you are going to represent yourself or your product or company or research paper and so on. Only standing and speaking is fairly ineffective.

Phong model or phong specular reflection model, Phong Model or Phong Specul...

Phong Model or Phong Specular Reflection Model It is an empirical model that is not based on physics, although physical observation. Phong observed here for extremely shiny su

Computer science, what do you means by bresenham s him algorithm

what do you means by bresenham s him algorithm

Derive the single combined transformation matrix, A 2D geometric shape is r...

A 2D geometric shape is rotated about a point with coordinates (1,2)  by 90°  in a clockwise direction.  Then, the shape is scaled about the same point in the x-coordinate by 2 tim

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd