Single point perspective transformation, Computer Graphics

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0



=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.


Hence, x'=-d+t*(x+d)=0



Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].

Posted Date: 4/4/2013 2:59:23 AM | Location : United States

Related Discussions:- Single point perspective transformation, Assignment Help, Ask Question on Single point perspective transformation, Get Answer, Expert's Help, Single point perspective transformation Discussions

Write discussion on Single point perspective transformation
Your posts are moderated
Related Questions
Introduction of Polygon Rendering and Ray Tracing Method Different type of sources of light and the reflections generated by the object in exposure of these sources. As an obje

computer animation Note : This is to be noticed that computer animation can also be produced by changing camera parameters as its position, orientation and focal length, as w

Assume here are three polygon surfaces P,Q, R along with vertices specified by as: P: P1(1,1,1), P2(4,5,2), P3(5,2,5) And as Q: Q1(2,2,0.5), Q2(3,3,1.75), Q3(6,1,0.5) R: R1(0.5,

Numerically-Controlled Machines: Prior to the development of Computer-aided design, the manufacturing world adopted elements controlled through numbers and letters to fi

Question 1 What is Packet-switching network? Discuss its basic operation Question 2 Briefly describe Jackson's theorem Question 3 List and explain the two popular

Define Octrees?  Hierarchical tree structures called octrees, are used to show solid objects in some graphics systems. Medical imaging and other applications that needs display

Cohen Sutherland Line Clippings Algorithm The clipping problem is identified by dividing the region surrounding the window area into four segments Up as U, Down as D, Left as

Essentialily of Computer Simulation You may want to understand why to do simulation? Is there any one way to perform the tasks? To converse these matters lets briefly discuss

What is Computer Graphics. Computer graphics remains most existing and rapidly growing computer fields. Computer graphics may be explained as a pictorial representation or gra

How to implement z-buffer algorithm using C programming