Single point perspective transformation, Computer Graphics

Assignment Help:

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]

=(-d,0,0)+t[x+d,y,z]

=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.

 

Hence, x'=-d+t*(x+d)=0

         y'=t*.y=y.d/(x+d)

         z'=t*.z=z.d/(x+d)

Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].


Related Discussions:- Single point perspective transformation

Positive accelerations - computer animation, Positive Accelerations - Compu...

Positive Accelerations - Computer Animation So as to incorporate increasing speed in an animation the time spacing among the frames should increase, hence greater change in th

What are the advantages of the boundary representation, Advantages of the B...

Advantages of the Boundary Representation (i) This format gives efficient picture generation and easy access to other geometric information. (ii) The changes produced by mos

Sound editing programs, Sound Editing Programs; Sound editing tools for bo...

Sound Editing Programs; Sound editing tools for both digitized and MIDI sound; by that you see music and also hear it. Through drawing a representation of a sound in fine growths,

PHONG INTERPOLATION, DESCRIBE PHONG INTERPOLATION SHADING METHOD

DESCRIBE PHONG INTERPOLATION SHADING METHOD

Write a note on mpeg-2, Question 1 Write a note on digitizers Quest...

Question 1 Write a note on digitizers Question 2 Discuss on line drawing algorithm Question 3 Explain 3D viewing Question 4 Explain different types of cohe

What are the disadvantages of CAD, Disadvantages of CAD - Risk of deski...

Disadvantages of CAD - Risk of deskilling - High training costs to use packages - Can move work overseas     One CAD operator can do work of 5 manual draftsmen

Explain about the computer based training, Explain about the Computer Based...

Explain about the Computer Based Training CBT makes use of a computer system to train people in numerous applications. It makes use of self-assessment and multimedia with minim

Differentiate between lossy and lossless compression, Question: (a) Di...

Question: (a) Differentiate between lossy and lossless compression. (b) State the uses of the two compression standards MPEG-1 and MPEG-2. (c) State three areas where

Xy-shear about the origin - 2-d and 3-d transformations, xy-Shear about the...

xy-Shear about the Origin - 2-d and 3-d transformations Suppose an object point P(x,y) be moved to P'(x',y') as a outcome of shear transformation in both x- and y-directions a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd