Single point perspective transformation, Computer Graphics

Assignment Help:

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]

=(-d,0,0)+t[x+d,y,z]

=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.

 

Hence, x'=-d+t*(x+d)=0

         y'=t*.y=y.d/(x+d)

         z'=t*.z=z.d/(x+d)

Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].


Related Discussions:- Single point perspective transformation

How avar values generate to get realistic movement, How avar values generat...

How avar values generate to get realistic movement There are numerous ways of generating avar values to get realistic movement. One way is to use markers on a real person (or w

Scale a sphere cantered on the point (1, Scale a sphere cantered on the poi...

Scale a sphere cantered on the point (1, 2, and 3) with radius 1, so that the new sphere has the same centre with radius 2.    Solution: Translate the sphere so that its centre

Types of graphic images, Types of Graphic Images: Graphic images have...

Types of Graphic Images: Graphic images have been processed through a computer can generally be divided in two distinct categories. That image is either bitmap files or vecto

Reflection, Determine the transformation matrix for the reflection, Compute...

Determine the transformation matrix for the reflection, Computer Graphics

What is transformation, What is Transformation?  Transformation is the ...

What is Transformation?  Transformation is the method of introducing changes in the shape size and orientation of the object using scaling rotation reflection shearing & transl

Texturing - texture coordinate, Background Texturing is like wallpaperin...

Background Texturing is like wallpapering; you are pasting an image onto the OpenGL Quad primitive.  Recall that GL_QUAD is specified by four vertices.  An image, or a texture,

Graphics programming, Explain rubber-band interactive picture technique

Explain rubber-band interactive picture technique

Curves and surfaces - modeling and rendering, Curves and Surfaces - Model...

Curves and Surfaces - Modeling   and Rendering We have studied the method of drawing curves in diverse coordinate systems. Also we got the concept that it is the revolution of

Animator studio and elastic reality - computer animation, Animator Studio a...

Animator Studio and Elastic Reality - Computer Animation Animator Studio It is a cell animation program from AutoDesk. Its predecessor was Animator Pro for PC DOS. Anima

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd