Single point perspective transformation, Computer Graphics

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]

=(-d,0,0)+t[x+d,y,z]

=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.

 

Hence, x'=-d+t*(x+d)=0

         y'=t*.y=y.d/(x+d)

         z'=t*.z=z.d/(x+d)

Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].

Posted Date: 4/4/2013 2:59:23 AM | Location : United States







Related Discussions:- Single point perspective transformation, Assignment Help, Ask Question on Single point perspective transformation, Get Answer, Expert's Help, Single point perspective transformation Discussions

Write discussion on Single point perspective transformation
Your posts are moderated
Related Questions
What is Aspect ratio?  The ratio of vertical points to the horizontal points essential to produce length of lines in both directions of the screen is known as the Aspect ratio.


Example: Exemplify the Bresenham line generation algorithm through digitizing the line along with end points (20, 10) and (30, 18) Solution: m =    (y2 - y1)/( x2 - x1)  =

Objects - polygon rendering and ray tracing methods Objects could be any state of material as solid, liquid. Gas and plasma. Though ray tracers can merely assist objects whic

Representational Animation - Computer Animation This method permits an object to change its shape throughout the animation. There are three sub-types to this. The initial is th

Properties of Perspective projections - Transformation 1) Faraway objects seem smaller. 2) Straight lines are projected to straight lines. 3) Let line 1 and 2 is two s

Performing rotation about an Axis For performing rotation about an axis parallel to one of the coordinate axes (say z-axis), you first need to translate the axis (and hence the

1. Using a time Delay Method The delay required between issuing each character to the LCD is about 5-10ms (it's simply known as DELAY). When programming an LCD, a long delay is

computer animation Note : This is to be noticed that computer animation can also be produced by changing camera parameters as its position, orientation and focal length, as w

Flat Panel Displays - Hardware Primitives 1.  Flat panel displays have now become more common. These include liquid crystal displays (LCD) and thin film electroluminescent disp