Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Problems with applying algorithms , PROBLEMS WITH APPLYING ALGORITHMS :  F...

PROBLEMS WITH APPLYING ALGORITHMS :  From your experience, you would agree that children are expected to mechanically apply the algorithms for adding or subtracting numbers, regar

matlab, how to solve simplex method using matlab

how to solve simplex method using matlab?

Determine how many poles are there in the stack, 1. A stack of poles has 22...

1. A stack of poles has 22 poles in the bottom row, 21 poles in the next row, and so on, with 6 poles in the top row. How many poles are there in the stack? 2. In the formula N

Find the depth of water in the pond, A lotus is 2m above the water in a pon...

A lotus is 2m above the water in a pond. Due to wind the lotus slides on the side and only the stem completely submerges in the water at a distance of 10m from the original positio

Derivative and differentiation, Derivative and Differentiation The pro...

Derivative and Differentiation The process of acquiring the derivative of a function or slope or gradient is referred to as differentiation or derivation. The derivative is de

Circles, examples of construction of excircles

examples of construction of excircles

Write triangles named by the lengths of their sides, Write Triangles Named ...

Write Triangles Named by the Lengths of Their Sides? An equilateral triangle is a triangle with three congruent sides. All three sides of this triangle are the same lengt

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd