Relation of time and space complexities of an algorithm, Data Structure & Algorithms

What is complexity of an algorithm? What is the basic relation between the time and space complexities of an algorithm? Justify your answer by giving an example.                         

Complexity of an algorithm is the measure of analysis of the algorithm. Analyzing an Algorithm means predicting the resources that the algorithm needs such as memory, communication bandwidth, time and logic gates. Most often it is computational or calculation time that is measured for finding a more suitable algorithm. This is called as time complexity of the algorithm.  The running time of a program is described or defined as a function of the size of its  input. On a specific input, it is traditionally measured as the number of primitive operations or steps executed.

The analysis of algorithm focuses on time complexity and space complexity both. As compared to time analysis, the analysis of space requirement for an algorithm is generally easier and faster, but wherever necessary, both the techniques can be used. The space is referred to as storage needed in addition to the space required storing the input data.  The amount of memory needed by the program to run to completion is referred to as space complexity. For an algorithm, time complexity depends only upon the size of the input, thus, it is a function of input size 'n'. So the amount of time required by an algorithm to run to its completion is referred as time complexity.

The best algorithm to solve a given problem is the one that requires less memory and takes less time to complete its execution of the algorithm. But in practice it is not always likely to achieve both of these objectives. There may be number of approaches to solve a same problem. One such approach may require more space but takes less time to complete its execution while on other hand the other approach requires less space but

more time to complete its execution. Thus we may have to compromise one thing to improve the other. That is, we may be able to reduce space requirement by increasing running time or we can reduce running time by allocating more memory space. This situation where we compromise one to improve the other is known as Time-space trade off.

 

Posted Date: 7/9/2012 9:50:02 PM | Location : United States







Related Discussions:- Relation of time and space complexities of an algorithm, Assignment Help, Ask Question on Relation of time and space complexities of an algorithm, Get Answer, Expert's Help, Relation of time and space complexities of an algorithm Discussions

Write discussion on Relation of time and space complexities of an algorithm
Your posts are moderated
Related Questions
1. A string s is said to be periodic with a period α, if s is α k for some k > 2. (Note that α k is the string formed by concatenating k times.) A DNA sequence s is called a tand


Q.1 What is an algorithm? What are the characteristics of a good algorithm? Q.2 How do you find the complexity of an algorithm? What is the relation between the time and space c

ALGORITHM (Insertion of element into a linked list) Step 1 Begin the program Step 2 if the list is empty or any new element comes before the start (head) element, then add t

how to reduce the number of passes in selection sort

Step-1: For the current node, verify whether it contain a left child. If it has, then go to step-2 or else go to step-3 Step-2: Repeat step-1 for left child Step-3: Visit (th

Implementation of queue using a singly linked list: While implementing a queue as a single liked list, a queue q consists of a list and two pointers, q.front and q.rear.

State the Introduction to pseudocode No specific programming language is referred to; development of algorithms by using pseudocode uses generic descriptions of branching, loop

The  total  of  time  needed  by  an algorithm to run to its completion is termed as time complexity. The asymptotic running time of an algorithm is given in terms of functions. Th

This unit discussed about data structure called Arrays. The easiest form of array is a one-dimensional array which may be described as a finite ordered set of homogeneous elements