Prove asymptotic bounds for recursion relations, Mathematics

1. (‡) Prove asymptotic bounds for the following recursion relations. Tighter bounds will receive more marks. You may use the Master Theorem if it applies.

1. C(n) = 3C(n/2) + n

2. G(n) = G(n - 1) + 1/n

3. I(n) = I(n/2) + n/ lg(n)

2. Define a (p,q)-tree as a rooted tree where every internal node has between p and q (inclusive) children. Use the Master Theorem to give asymptotic bounds for the height of the tree. You can assume both p and q are constants with 2 ≤ p ≤ q.

3. (‡) Dominos


A 2 × 10 rectangle filled with ten dominos, and a 2 × 2 × 10 box filled with ten slabs.

1. A domino is a 2×1 or 1×2 rectangle. How many different ways are there to completely fill a 2 × n rectangle with n dominos?

2. A slab is a three-dimensional box with dimensions 1 × 2 × 2, 2 × 1 × 2, or 2 × 2 × 1. How many different ways are there to fill a 2 × 2 × n box with n slabs? Set up a recurrence relation and give reasonable exponential upper and lower bounds.

Posted Date: 3/19/2013 5:13:49 AM | Location : United States

Related Discussions:- Prove asymptotic bounds for recursion relations, Assignment Help, Ask Question on Prove asymptotic bounds for recursion relations, Get Answer, Expert's Help, Prove asymptotic bounds for recursion relations Discussions

Write discussion on Prove asymptotic bounds for recursion relations
Your posts are moderated
Related Questions
how to compute the frequncy polygon of the scores?

Q. Definition of Logarithms? Ans. A logarithm to the base a of a number x is the power to which a is raised to get x. In equation format: If x = a y , then log a  x

Find the normalized differential equation which has { x, xe^x } as its fundamental set

Marvin is helping his teachers plan a ?eld trip. There are 125 people going on the ?eld trip and each school bus holds 48 people. What is the minimum number of school buses they wi

Example of Circles - Common Polar Coordinate Graphs Example: Graph r = 7, r = 4 cos θ, and r = -7 sin θ on similar axis system. Solution The very first one is a circle

Verify the Parseval theorem for the discrete-time signal x(n) and its DFT from given equations. Compute the linear convolution of the discrete-time signal x(n) ={3, 2, 2,1} and

Normal 0 false false false EN-IN X-NONE X-NONE

the wholesale p of string beans in dollars per bushel and the daily supply x in thousands of bushel,are related by the equation px+6x+7p=5950. if the supply is decreasing at the r

If 28,000 = 85% and 28,000 / X = 100%. What the freak is X and how do you work it out.

Find the solution to the following system of equations using substitution: