Prove asymptotic bounds for recursion relations, Mathematics

1. (‡) Prove asymptotic bounds for the following recursion relations. Tighter bounds will receive more marks. You may use the Master Theorem if it applies.

1. C(n) = 3C(n/2) + n

2. G(n) = G(n - 1) + 1/n

3. I(n) = I(n/2) + n/ lg(n)

2. Define a (p,q)-tree as a rooted tree where every internal node has between p and q (inclusive) children. Use the Master Theorem to give asymptotic bounds for the height of the tree. You can assume both p and q are constants with 2 ≤ p ≤ q.

3. (‡) Dominos


A 2 × 10 rectangle filled with ten dominos, and a 2 × 2 × 10 box filled with ten slabs.

1. A domino is a 2×1 or 1×2 rectangle. How many different ways are there to completely fill a 2 × n rectangle with n dominos?

2. A slab is a three-dimensional box with dimensions 1 × 2 × 2, 2 × 1 × 2, or 2 × 2 × 1. How many different ways are there to fill a 2 × 2 × n box with n slabs? Set up a recurrence relation and give reasonable exponential upper and lower bounds.

Posted Date: 3/19/2013 5:13:49 AM | Location : United States

Related Discussions:- Prove asymptotic bounds for recursion relations, Assignment Help, Ask Question on Prove asymptotic bounds for recursion relations, Get Answer, Expert's Help, Prove asymptotic bounds for recursion relations Discussions

Write discussion on Prove asymptotic bounds for recursion relations
Your posts are moderated
Related Questions
Donald sold $5,250 worth of latest insurance policies last month. If he receives a commission of 7% on new policies, how much did Donald earn in commissions last month? To ?nd

how to know if it is function and if is relation

Your engineering department estimated the following production function. Q = 15L 2 - 0.5L 3 a. What is the marginal product of labor function, MP L ? b. What is the aver

If the distances from origin of the centres of 3 circles x 2 +y 2 +2alphaix= a 2 (i=1,2,3) are in G.P. , then length of the tangents drawn to them frm any point on the circles x2+

Linear Equations We'll begin the solving portion of this chapter by solving linear equations. Standard form of a linear equation: A linear equation is any equation whi

a conical hole drilled in a circular cylinder of height 12 and radius 5cm the height and radius of cone are also same find volume

What are some of the interestingmodern developments in cruise control systems that contrast with comparatively basic old systems

Fundamental Theorem of Calculus, Part II  Assume f(x) is a continuous function on [a,b] and also assume that F(x) is any anti- derivative for f(x). Hence, a ∫ b f(x) dx =

A car travels 283 1/km in 4 2/3 hours .How far does it go in 1 hour?

Indeterminate forms Limits we specified methods for dealing with the following limits. In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit