Prove asymptotic bounds for recursion relations, Mathematics

Assignment Help:

1. (‡) Prove asymptotic bounds for the following recursion relations. Tighter bounds will receive more marks. You may use the Master Theorem if it applies.

1. C(n) = 3C(n/2) + n

2. G(n) = G(n - 1) + 1/n

3. I(n) = I(n/2) + n/ lg(n)

2. Define a (p,q)-tree as a rooted tree where every internal node has between p and q (inclusive) children. Use the Master Theorem to give asymptotic bounds for the height of the tree. You can assume both p and q are constants with 2 ≤ p ≤ q.

3. (‡) Dominos

853_domains.png

A 2 × 10 rectangle filled with ten dominos, and a 2 × 2 × 10 box filled with ten slabs.

1. A domino is a 2×1 or 1×2 rectangle. How many different ways are there to completely fill a 2 × n rectangle with n dominos?

2. A slab is a three-dimensional box with dimensions 1 × 2 × 2, 2 × 1 × 2, or 2 × 2 × 1. How many different ways are there to fill a 2 × 2 × n box with n slabs? Set up a recurrence relation and give reasonable exponential upper and lower bounds.


Related Discussions:- Prove asymptotic bounds for recursion relations

Ellipse, alpha and beta are concentric angles of two points A and B on the ...

alpha and beta are concentric angles of two points A and B on the ellipse.

Linear functions, Linear functions are of the form: y = a 0 ...

Linear functions are of the form: y = a 0 + a 1 x 1 + a 2 x 2 + ..... + a n x n where a 0 , a 1 , a 2 ..... a n are constants and x 1 , x 2 ..... x n a

What is partially ordered set, What is Partially Ordered Set?  Let  S = {a,...

What is Partially Ordered Set?  Let  S = {a,b,c} and A = P(S). Draw the Hasse diagram of the poset A with the partial order ⊆ (set inclusion).   Ans: Let R be a relation define

Which of the following could be the dimensions the courty x, Katie's school...

Katie's school has a rectangular courtyard whose area can be expressed as 3x 2 - 7x + 2. Which of the following could be the dimensions of the courtyard in terms of x? Since t

Forced - damped vibrations, It is the full blown case where we consider eve...

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case, Mu'' + γu'  + ku = F( t) The displ

Functions of several variables - three dimensional space, Functions of Seve...

Functions of Several Variables - Three Dimensional Space In this part we want to go over a few of the basic ideas about functions of much more than one variable. Very first

Binimial, theory behind the greatest term in the binomial expansion

theory behind the greatest term in the binomial expansion

Calculate the ratio of the areas of three sectors, A circular disc of 6 cm ...

A circular disc of 6 cm radius is divided into three sectors with central angles 1200, 1500,900. What part of the circle is the sector with central angles 1200. Also give the ratio

Factorization of expressions, Above we have seen that (2x 2 - x + 3)...

Above we have seen that (2x 2 - x + 3) and (3x 3 + x 2 - 2x - 5) are the factors of 6x 5 - x 4 + 4x 3 - 5x 2 - x - 15. In this case we are able to find one facto

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd