Properties for exponents, Mathematics

The next thing that we must acknowledge is that all of the properties for exponents. This includes the more general rational exponent that we haven't looked at yet.

Now the properties of integer explore are valid for this section also then we can see how to deal with the more general rational exponent. In fact there are two different ways of dealing along with them as we'll see.  Both of the methods involve via property 2 from the previous section.  For reference reason this property is,

                                                                  (an )m  = anm

Thus, let's see how to deal along with a general rational exponent.  First we will rewrite the exponent as follows.

                                                  b m /n   = b(1/n) (m)

In other terms we can think of the exponent like a product of two numbers.  We will now use the exponent property illustrated above.  Though, we will be using it in the opposite direction than what we did in the earlier section.  Also, there are two ways to do it.  Here they are following,

b m /n  = ( b 1/n )          Or                             b m/ n   =(bm )1/n

By using either of these forms now we can evaluate some more complicated expressions

Posted Date: 4/6/2013 1:52:43 AM | Location : United States







Related Discussions:- Properties for exponents, Assignment Help, Ask Question on Properties for exponents, Get Answer, Expert's Help, Properties for exponents Discussions

Write discussion on Properties for exponents
Your posts are moderated
Related Questions
why is a complimentary angle 90 degres

find the area of this figure in square millimeter measure each segment to the nearest millmeter

Different types of rectilinear figures

volume=(1/3)(pi)(radius of base)2(height) curved surface area=(pi)(r)(l), r is radius of base and l is length of straight line connecting apex of cone with point on edge of base

Parallel Vectors - Applications of Scalar Multiplication This is an idea that we will see fairly a bit over the next couple of sections.  Two vectors are parallel if they have

[3+tan20+tan80]/tan20+tan80

AB,BC,CD ARE THREE CONSECUTIE SIDES OF REGULAR POLYGON.IF ANGLE BAC IS 18 DEGREE, FIND EXTERIOR ANGLES AND NUMBER OF SIDES ?

Direction Cosines This application of the dot product needs that we be in three dimensional (3D) space not like all the other applications we have looked at to this point.

Find the sum of a+b, a-b, a-3b, ...... to 22 terms. Ans:    a + b, a - b, a - 3b, up to 22 terms d= a - b - a - b = 2b S22 =22/2 [2(a+b)+21(-2b)] 11[2a + 2b - 42b] =

Variance Consider the example of investment opportunities. The expected gains were Rs.114 and Rs.81 respectively. The fact is that an investor also looks at the dispersion befo