Proof of alternating series test, Mathematics

Assignment Help:

Proof of Alternating Series Test

With no loss of generality we can assume that the series begins at n =1. If not we could change the proof below to meet the new starting place or we could perform an index shift to obtain the series to begin at n =1 .

First, notice that because the terms of the sequence are decreasing for any two successive terms we can say,

bn - bn+1 ≥ 0

Here now, let us take a look at the even partial sums.

s2 = b1 - b2 ≥ 0

s4 = b1 - b2 + b3 - b4 = s2 + b3 - b4 ≥ s2                                              because b3 - b4 > 0

S6 = s4 + b5 - b6  ≥ s4                                                            because b5 - b6 > 0     

S2n = S2n -2 + b2n -1 - b2n  ≥ S2n -2                                                           because b2n-1 - b2n > 0

Thus, {S2n}is an increasing sequence.

 Next, we can as well write the general term as,

S2n = b1-b2 + b3 - b4 + b5 + .... - b2n-2 + b2n-1 - b2n

= b1 - (b2-b3) - (b4 - b5) + ..... - (b2n-2 - b2n-1) - b2n

Every quantity in parenthesis is positive and by assumption we be familiar with that b2n is as well positive.  Thus, this tells us that S2n< b1 for all n.

We now be familiar with that {S2n}is an increasing sequence that is bounded above and thus we know that it must as well converge.  Thus, let's assume that its limit is s or,

1578_Proof of Alternating Series Test 1.png

Subsequently, we can quickly find out the limit of the sequence of odd partial sums, {S2n+1} as follows,

1043_Proof of Alternating Series Test 2.png

Thus, we now know that both of the {S2n} and {S2n+1} are convergent sequences and they both have similar limit and so we as well know that {Sn} is a convergent sequence along with a limit of s.  This in turn tells us that ∑an is convergent.


Related Discussions:- Proof of alternating series test

Wants to Join as expert, Hi.. This is dinesh kumar I just joined experminds...

Hi.. This is dinesh kumar I just joined experminds.com , i wamt to receive assignment in maths and want to complete students assignment within time. Please help me how i can become

Example of division , Example of division: Divide 738 by 83. Soluti...

Example of division: Divide 738 by 83. Solution: Example: Divide 6409 by 28. Solution: Division could be verified through multiplying

Differential equation (dy/dx) +x^2 = x^2*e^(3y), The general solution of th...

The general solution of the differential equation (dy/dx) +x^2 = x^2*e^(3y). Solution)(dy/dx) +x^2 = x^2*e^(3y) dy/dx=x 2 (e 3y -1) x 2 dx=dy/(e 3y -1) this is an elementar

Parallel lines, Parallel to the line specified by 10 y + 3x= -2 In this...

Parallel to the line specified by 10 y + 3x= -2 In this case the new line is to be parallel to the line given by 10 y ? 3x ? -2 and so it have to have the similar slope as this

Sum and difference identities, Q. Sum and Difference Identities? Ans. ...

Q. Sum and Difference Identities? Ans. These six sum and difference identities express trigonometric functions of (u ± v) as functions of u and v alone.

What is a function, What is a Function, Anyway? Domain? Range? Next tim...

What is a Function, Anyway? Domain? Range? Next time you're at a fast-food restaurant, take a look at the price list. It may look something like this: • Hamburger.............

Logic, INSTRUCTIONS: Construct a regular proof to derive the conclusion of ...

INSTRUCTIONS: Construct a regular proof to derive the conclusion of the following argument: 1. H v (~T > R) 2. Hv (E > F) 3. ~T v E 4. ~H & D / R v F INSTRUCTIONS: Con

Probability - Compound Events, David wants to rent a movie. He wants to wat...

David wants to rent a movie. He wants to watch either a comedy or a drama. The movie rental store has 18 comedies and dramas available for rent. Seven of the movies are comedies, a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd