Probability and expected utility, Game Theory

Assignment Help:

PROBABILITY AND EXPECTED UTILITY

Most students know the elementary combinatorial rules for probability algebra and need only a refresher with some exam- ples. We have used card examples; you can easily construct similar ones with coins or dice.

The concept of risk aversion is simple at an intuitive level, but its treatment using expected utility can be difficult to get across. We have found it useful to involve the students. Take a particular utility function, say the logarithmic, and calculate the sure prospect that gives the same utility as the expected utility of a particular lottery. The logarithmic utility function is shown in the diagram below, with payoffs on the vertical axis representing the log of the dollar amount on the horizontal axis:

1882_probability and expected utility.png

In this case, U(10) = 1 and U(100) = 2. One possible lottery to consider might be that in which there is a 50-50 chance of getting 10 or 100 (55 on average). With risk aversion, U(0.5 ´ 10 + 0.5 ´ 100) = 1.74 > 0.5 ´ U(10) +  0.5 ´ U(100). Rather, 0.5 ´ U(10) + 0.5 ´ U(100) = 1.5 = U(31.6). Thus, $31.60 gives the same amount of utility as the 50-50 lottery between $10 and $100 under  this utility function. Now ask for a vote on how many students would accept the sure  prospect  ($31.60)  and  how  many  the  lottery  (50% chance of $10 and 50% chance of $100). If a majority would accept the sure prospect, say, "Most of you seem more risk- averse than  this. Let us try a more concave function, say U(x) = -1/x" and repeat the experiment. You can use this process to try to find the risk aversion of the median student.

A few students get sufficiently intrigued by this to want more. If your class gets interested, and if you have time, you can talk about the history of the subject (St. Petersburg para- dox and all that) or about the recent work in psychology and economic theory on non-expected-utility approaches. For a discussion of the St. Petersburg paradox, or consider using the following simple example of the Allais paradox that can help students see that they do not always make choices consistent with maximizing their expected utility.

Describe first a choice between two lotteries: Lottery A pays $3,000 with probability 1 and Lottery B pays $0 with probability 0.2 and $4,000 with probability 0.8. Ask stu- dents to choose which lottery they would prefer to enter at a price of zero (and ask them to make note of their choices). Most choose A over B. Then describe a choice between two different lotteries: Lottery C pays $0 with probability 0.8 and

$4,000 with probability 0.2; Lottery D pays $0 with proba- bility 0.75 and $3,000 with probability 0.25. Again ask students to pick. Most choose C over D.

Now consider how the paired choices fit with the idea that people maximize expected utility. Set U(0) = 0. For those who chose A and C, this implies that EU(A) > EU(B) or that 1U(3,000) > 0.8U(4,000); but choosing C implies that EU(C) > EU(D) or that 0.2U(4,000) > 0.25U(3,000). The latter is equivalent to 0.8U(4,000) > 1U(3,000). This is in direct contradiction to the implication made when choos- ing A over B. Similar calculations can be used to show that those who choose B and D also violate the expected utility hypothesis. The choices of both A and D, or both B and C are consistent with maximization of expected utility.


Related Discussions:- Probability and expected utility

Design mousetrap game board, Three flowcharts and the game board for your m...

Three flowcharts and the game board for your mousetrap game should be submitted. You can use board_design.pdf to help you lay out your board. Basically, you can use any shapes you

Find the quantities that firm is selling – equilibrium price, 1. Two firms,...

1. Two firms, producing an identical good, engage in price competition. The cost functions are c 1 (y 1 ) = 1:17y 1 and c 2 (y 2 ) = 1:19y 2 , correspondingly. The demand functi

Simultaneous move games with mixed strategies, This chapter introduces mixe...

This chapter introduces mixed strategies and the methods used to solve for mixed strategy equilibria. Students are likely to accept the idea of randomization more readily if they t

Games with sequential moves, Games with Sequential Moves Most students ...

Games with Sequential Moves Most students find the idea of rollback very simple and natural, even without drawing or understanding trees. Of course, they start by being able to

Game playing in class-equilibrium payoffs are (2, Equilibrium payoffs are ...

Equilibrium payoffs are (2, 3, 2). Player A’s equilib- rium strategy is “N and then N if b follows N or N if d follows N” or “Always N.” Player B’s equilibrium strategy is “b if N

Game:claim a pile of dimes, GAME 1 Claim a Pile of Dimes Two players A...

GAME 1 Claim a Pile of Dimes Two players Aand B are chosen. The instructor places a dime on the table. Player A can say Stop or Pass. If Stop, then A gets the dime and the gam

Evolutionary games, How much time you want to spend on this material willde...

How much time you want to spend on this material willdepend on the focus of your course. For many social sciencecourses, a general exposure to the ideas, based on a quick runthroug

Borel, Borel was maybe the primary to outline the notion of games of strate...

Borel was maybe the primary to outline the notion of games of strategy. He printed many papers on poker, incorporating themes of imperfect data and credibility. Whereas his writing

Extensive kind, The in depth kind (also referred to as a game tree) may be ...

The in depth kind (also referred to as a game tree) may be a graphical illustration of a sequential game. It provides data concerning the players, payoffs, strategies, and also the

Find the nash equilibria of game - bimatrix of strategies, Players 1 and 2 ...

Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name shares they would like to keep s 1 and s 2 . Furthermore, players' choices have to be

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd