Positive accelerations - computer animation, Computer Graphics

Positive Accelerations - Computer Animation

So as to incorporate increasing speed in an animation the time spacing among the frames should increase, hence greater change in the position arise, as the object moves faster. In common, the trigonometric function utilized to have raised interval size the function is (1- Cos Θ) ,0<Θ<Π/2 .

For n in-betweens, the time for the Jth in-between would be computed as:

ΔTJ = Ta + ΔT [1 - Cos( J (Π/ 2)( N + 1))];      J = 1, 2, 3,........, N

ΔT=time dissimilarity among two key frames =Tb-Ta

2381_Positive Accelerations - Computer Animation 3.png

In above figure represents a positive acceleration case since the space (that is, time space) among frames continuously raising leading to the raise in accelerations that are changes in object position in two frames is fast. Here we study the trigonometric function utilized to find out positive acceleration, as Y=(1-Cos Θ) ,0<Θ<Π/2

 At Θ = 0;

Y = (1 - Cos0) = 1 - 1 = 0

 At Θ = Π/ 2 ;   Y =

 (1 - Cos Π/ 2) = 1 - 0 = 1

 Now see at Figure 7 for appropriate understanding of concept.

745_Positive Accelerations - Computer Animation 1.png

Note: consisting projections of points upon curve, over Y axis, we will obtain a pattern as same to Figure 6 that is required to generate positive acceleration.

11_Positive Accelerations - Computer Animation 2.png

Raises in gap along y-axis depict that spacing among key frames increases that leads to accelerated motion.

As our intend here is to have acceleration in the motion thus we create N-in between frames, among two key frames that leads to N+1 sections and divide Θ axis in to N fragments, for all fragments, we get Y=(1-CosΘ). Substituting diverse values of Θ we find various Y as demonstrated in figure 7 and 7(a), the space among frames is continuously raising, imparting an accelerated motion.

Length of all subintervals (Θ) = (Θ12 )/no. of subintervals = (Π/ 2 - 0) N + 1 = Π/ 2(N + 1)

Hence, change in (Θ) produces change of 1- Cos ( (Π / 2)(N+1))

Posted Date: 4/5/2013 6:13:13 AM | Location : United States







Related Discussions:- Positive accelerations - computer animation, Assignment Help, Ask Question on Positive accelerations - computer animation, Get Answer, Expert's Help, Positive accelerations - computer animation Discussions

Write discussion on Positive accelerations - computer animation
Your posts are moderated
Related Questions
Polygon Clipping - Raster Graphics and Clipping After considerate the idea of line clipping and its algorithms, we can currently extend the idea of line clipping to polygon cl

Question 1: (a) The studio provides a perfect environment for various types of video production where precise control is necessary. Discuss. (b) Studio lighting is an import

Transformation for 3-D Shearing 2-dimensional xy-shearing transformation, as explained in equation, can also be simply extended to 3-dimensional case. All coordinates are tran

1. What do you understood by the term graphic primitives? Ans. Graphic primitives are the basic graphic objects that can be united in any number and method to produce a new i

determine the tranformation matrix for reflection,computer graphics

Illustration 1: How does the z-buffer algorithm find out which surfaces are hidden? Solution : Depth or Z-buffer algorithm employs a two buffer area each of two-dimensional ar


Scripting Systems- Computer Animation Scripting Systems are the earliest type of motion control systems. Scripting systems permit object specifications and animation sequenc

what is the numerical numbers

explain the registers used in video controller