Positive accelerations - computer animation, Computer Graphics

Positive Accelerations - Computer Animation

So as to incorporate increasing speed in an animation the time spacing among the frames should increase, hence greater change in the position arise, as the object moves faster. In common, the trigonometric function utilized to have raised interval size the function is (1- Cos Θ) ,0<Θ<Π/2 .

For n in-betweens, the time for the Jth in-between would be computed as:

ΔTJ = Ta + ΔT [1 - Cos( J (Π/ 2)( N + 1))];      J = 1, 2, 3,........, N

ΔT=time dissimilarity among two key frames =Tb-Ta

2381_Positive Accelerations - Computer Animation 3.png

In above figure represents a positive acceleration case since the space (that is, time space) among frames continuously raising leading to the raise in accelerations that are changes in object position in two frames is fast. Here we study the trigonometric function utilized to find out positive acceleration, as Y=(1-Cos Θ) ,0<Θ<Π/2

 At Θ = 0;

Y = (1 - Cos0) = 1 - 1 = 0

 At Θ = Π/ 2 ;   Y =

 (1 - Cos Π/ 2) = 1 - 0 = 1

 Now see at Figure 7 for appropriate understanding of concept.

745_Positive Accelerations - Computer Animation 1.png

Note: consisting projections of points upon curve, over Y axis, we will obtain a pattern as same to Figure 6 that is required to generate positive acceleration.

11_Positive Accelerations - Computer Animation 2.png

Raises in gap along y-axis depict that spacing among key frames increases that leads to accelerated motion.

As our intend here is to have acceleration in the motion thus we create N-in between frames, among two key frames that leads to N+1 sections and divide Θ axis in to N fragments, for all fragments, we get Y=(1-CosΘ). Substituting diverse values of Θ we find various Y as demonstrated in figure 7 and 7(a), the space among frames is continuously raising, imparting an accelerated motion.

Length of all subintervals (Θ) = (Θ12 )/no. of subintervals = (Π/ 2 - 0) N + 1 = Π/ 2(N + 1)

Hence, change in (Θ) produces change of 1- Cos ( (Π / 2)(N+1))

Posted Date: 4/5/2013 6:13:13 AM | Location : United States

Related Discussions:- Positive accelerations - computer animation, Assignment Help, Ask Question on Positive accelerations - computer animation, Get Answer, Expert's Help, Positive accelerations - computer animation Discussions

Write discussion on Positive accelerations - computer animation
Your posts are moderated
Related Questions

What is Resolution, how to adjust it.  Resolution: The maximum number of points that can be displayed without overlap on a CRT is referred to as the resolution . A more prec

Education courses, skills, and knowledge are sometimes taught of context because of lack of application of real time examples. To resolve this, educators are using multimedia to br

deffrent between vecgen algorithm and bresenham line algorithm in computer graphic

what are the steps involved in 3D transformation

QUESTION (a) Name the spaces and guides in the Figure below                 (b) What is the difference between Pantone and Process colors? Elaborate (c) Explain what i

what do you means by bresenham s him algorithm

Question 1: (a) Describe what you understand by Rotoscoping in Graphic effects. Give details how Rotoscoping could be achieved in After Effects CS3. (b) Using one algorithm

Mathematical description of a Perspective Projection A perspective transformation is found by prescribing a center of projection and a viewing plane. Let here assume that P(x