Polynomials in two variables, Mathematics

Polynomials in two variables

Let's take a look at polynomials in two variables.  Polynomials in two variables are algebraic expressions containing terms in the form axn y m .  The degree of each term is the sum of the exponents in each term & the degree of the polynomial is the largest such sum in polynomial in two variables.

Following are some examples of polynomials in two variables and their degrees.

x2 y - 6x3 y12 + 10x2 - 7 y + 1                                      degree : 15

6x4 + 8 y 4 - xy 2                                                                      degree : 4

x4 y 2 - x3 y3 - xy + x4                                                degree : 6

6x14 -10 y3 + 3x -11y                                                  degree : 14

In these sort of polynomials not every term have to have both x's & y's in them, actually as we see in the last instance they don't have to have any terms which contain both x's and y's. Also, the degree of the polynomial might come from terms involving only one variable.  Note as well that multiple terms might have the same degree.

We also can talk about polynomials in three variables, or four variables or as several variables as we require.

Posted Date: 4/6/2013 2:21:01 AM | Location : United States







Related Discussions:- Polynomials in two variables, Assignment Help, Ask Question on Polynomials in two variables, Get Answer, Expert's Help, Polynomials in two variables Discussions

Write discussion on Polynomials in two variables
Your posts are moderated
Related Questions
hi i would like to ask you what is the answer for [-9]=[=5] grade 7

A bag contains 8 red balls and x blue balls, the odd against drawing a blue ball are 2: 5. What is the value of x?                                                               (An


My nephew had been introduced to division by his teacher Ms. Santosh, in Class 3. He, and several of his friends who had been taught by her, appeared to be quite comfortable with t

Define a complete lattice and give one example. Ans:  A lattice (L, ≤) is said to be a complete lattice if, and only if every non-empty subset S of L has a greatest lower bound


gjhgjg

How do I solve step by step 7

Differentiate following functions.                       h (t ) = 2t 5 + t 2 - 5 / t 2 We can simplify this rational expression as follows.                       h (t )