Paramagnetism, chemistry, Microeconomics

Assignment Help:

chemistry assignmentsSome normally nonmagnetic substances are attracted by a magnetic field and studies of these "paramagnetic" substances give information about the number of unpaired electrons in the atoms, molecules, or ions of the substance.

The paramagnetic effect can be introduced problem of the magnetic behavior of an electron revolving about a nucleus. A classical treatment is easily made and yields a result which can then be converted to the correct quantum mechanical result. The motion of an electron in an orbit corresponds, in this connection, to the passage of a current through a coil of wire. A current in a coil of wire of ordinary dimensions produces a coil of wire. A current in a coil of wire of ordinary dimensions produces a magnetic field perpendicular to the coil. The magnetic field so produced is equal, according to Ampere's law, to that of a magnet with magnetic moment given by the product of the current and the cross section area fo the loop of wire.

μM = iA
 
The current corresponding to an electron in orbit is obtained by multiplying the number of times the electrons passes any point on the orbit by its electronic charge. Thus, with this classical picture of an electron in an atomic orbit, I = [v/ (2∏r)]e, where the electron velocity is v and the orbit has the radius r. the cross section area is A = ∏r2. The magnetic moment μM is expressed as 

μM = vre/2   or μm/mvr = e/2m

This final form expresses the result of this classical derivation that can be carried over into quantum mechanical systems, namely, that the ratio of the magnetic moment to the orbital angular moment due to the orbital angular moment is equal to e/(2m).

The orbital angular momentum of an electron of an atom depends, as shown on the quantum number l and is given by the expression √l (l + l) h. we can express the magnetic moment due to the orbital motion of the electrons as:

μM = h√l (l + l) (e/2m) = eh/2m √l (l + l)

The constant factor in this equation provides a convenient unit in which to express the magnetic moment of atoms and molecules, and one therefore introduces the symbol μB = eh/2m

With this unit, the orbital magnetic moment of an electron of an atom is given by:

μM = μB √ l (l + l)

When a similar approach is extended to molecules and ions, rather than free atoms, it would seem reasonable to except the orbital motions of the electrons to contribute a magnetic moment of the order of an electronic Bohr magneton. This expectation is not generally borne out, and it appears that the orbitals motions of the electrons in a polyatomic system are tried into the nuclear configuration of the magnetic field and are therefore ineffective. Even for single atom ion is solution, the interaction of the orbitals of the ion with the solvating molecules is apparently sufficient to prevent orbitals from being oriented so that their magnetic moment contributes in the directions of the field. Thus the orbital magnetic moment contribution to the magnetic susceptibility is generally quite small.

We must look to electron spin to explain the larger part of the magnetic moment of those molecules and ions which have magnetic moments. The association of a spin angular momentum of √S (S+ 1)h, where s has the value of ½, leads, according to the equation above to the expectation of a spin magnetic moment expected on the basis of the ratio of the magnetic moment to the angular momentum implied by the equation. Therefore, for the spin magnetic moment due to the electron spin, expressed in terms of the spin quantum number S of an atom or molecule, we have:

μM = 2μB √S (S + 1)

For one, two, three..... unpaired electrons, the spin, angular momentum quantum number S is ½, 2/2, 3/2... with the above equation and the assumption that the magnetic polarizability μM contribution has been taken care of and that the orbital contribution to x is negligible, the magnetic susceptibility of the eq, is related to the total electron spin by the relation:

X = (4N µ0 µ2B/3kT) S (S + 1) = (6.29 × 10-6/T) S (S +1)

At 25° C this expression gives:

X = (2.11 × 10-8) S (S + 1) 25° C 


Related Discussions:- Paramagnetism, chemistry

Ols, Which assumption of Classic OLS does this model violate?

Which assumption of Classic OLS does this model violate?

Fixed exchange rate system, FIXED EXCHANGE RATE SYSTEM: National curre...

FIXED EXCHANGE RATE SYSTEM: National currencies are generally acceptable within the geographical boundaries of a country. As such, trade between countries typically involves

Determinants of private demand for education, Determinants of Private Deman...

Determinants of Private Demand for Education Rates of return on investment in education is only one of the factors determining the demand for private investment though it is

Households and consumers, What is the difference between houehold and consu...

What is the difference between houehold and consumers?

State property regime , State Property Regime Normal 0 ...

State Property Regime Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

Majority minority, Are there any economic effects to non-Hispanic whites, g...

Are there any economic effects to non-Hispanic whites, given that they no longer represent the majority of the population? Why are these examples important from an economic standpo

Input substitution when the input price change, Input Substitution When the...

Input Substitution When the Input Price Change  Isoquants and Isocosts and Production Function The minimum cost combination can be written as: - Minimum cost

Production possibilty curve, why is the point outside the production possib...

why is the point outside the production possibility curve(PPC)called unttianable

Edge act, Edge Act A federal law passed in 1919 that are available nat...

Edge Act A federal law passed in 1919 that are available national banks to accomplish foreign lending operations through federal or state chartered subsidiaries called Edge Ac

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd