Operation on polynomial, Mathematics

Assignment Help:

Perform the denoted operation for each of the following.

 (a) Add 6x5 -10x2 + x - 45 to 13x2 - 9 x + 4 . 

 (b) Subtract 5x3 - 9 x2 + x - 3 from       x2+ x +1. 

Solution

(a) Add 6x5 -10x2 + x - 45 to 13x2 - 9 x + 4 . 

The first thing which we have to do is in fact write down the operation which we are being asked to do.

                        (6 x5 -10 x2 + x - 45) +(13x2  - 9 x + 4)

In this case the parenthesis is not needed since we are going to add the two polynomials. They are there basically to make clear the operation which we are performing.  In order to add two polynomials all that we do is combine such as terms. It means that for each term with the similar exponent we will add or subtract the coefficient of that term.

In this case this is,

 (6x5 -10x2 + x - 45) + (13x2 - 9 x + 4) =6 x5 + (-10 + 13) x2 + (1 - 9) x - 45 + 4

                                                             = 6x5 + 3x2 - 8x - 41

(b) Subtract 5x3 - 9 x2 + x - 3 from x2 + x + 1.

Again, let's write down the operation we are doing here.  We will also need to be very careful with the order that we write things down in.  Here is the operation

                                                  x2 + x + 1 - (5x3  - 9 x2 + x - 3)

This time the parentheses about the second term are absolutely needed.  We are subtracting the whole polynomial & the parenthesis has to be there to ensure we are actually subtracting the whole polynomial.

In performing the subtraction the first thing which we'll do is distribute the minus sign through the parenthesis. It means that we will alter the sign on every term into the second polynomial. Notice that all we are actually doing here is multiplying a "-1" to the second polynomial via the distributive law.  After distributing the minus through the parenthesis again we combine like terms.

Here is the work for this problem.

x2 + x + 1 - (5x3  - 9 x2 +x - 3) = x2 + x + 1 - 5x3 + 9 x2 - x + 3

                                                 = -5x3 + 10x2 + 4

Notice that sometimes a term will totally drop out after combing such as terms as the x did here. It will happen on occasion thus don't get excited about it while it does happen.

Now let's move over multiplying polynomials.  Again, it's best to do these in an instance.


Related Discussions:- Operation on polynomial

Application of statistics-economic order quantities (eoq), economic order q...

economic order quantities (EOQ) Statistics may be utilized in ordering or making economic order quantities as EOQ. It is significant for a business manager to understand that

Concept, uses of maths concept

uses of maths concept

Precalculus, how does sin of x equal negative 1/3

how does sin of x equal negative 1/3

Permutation and combination, howmany numbers made by digit 0,1,2,3,5,7,9 bu...

howmany numbers made by digit 0,1,2,3,5,7,9 but any digit isnot repeted

Venn Diagram, In a group of 85 people, 33 own a microwave, 28 own a DVD pla...

In a group of 85 people, 33 own a microwave, 28 own a DVD player and 38 own a computer. In addition, 6 people own both a microwave and a DVD player, 9 own both a DVD player and a c

Sqrt n- sqrt 8836, How many integers satisfy (sqrt n- sqrt 8836)^2 Solutio...

How many integers satisfy (sqrt n- sqrt 8836)^2 Solution) sqrt 8836 = 94 , let sqrt n=x the equation becomes... (x-94)^2 (x-94)^2 - 1 (x-95)(x-93) hence  93 8649  the number o

Determine the exterior angle, Using the sketch below and the fact that ∠A +...

Using the sketch below and the fact that ∠A + ∠B + ∠C + ∠D = 325, Determine m∠E.   a. 81° b. 35° c. 25° d. 75° b. The addition of the measures of the exterio

Find lim sup, 1.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd a...

1.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd and liminf Ek=[(-1,(1/k)] for k even.  2.Show that the set E = {x in R^2 : x1, x2 in Q} is dense in R^2.  3.let r>0 an

Shortcuts, pls told the maths shortcuts

pls told the maths shortcuts

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd