Operation on polynomial, Mathematics

Perform the denoted operation for each of the following.

 (a) Add 6x5 -10x2 + x - 45 to 13x2 - 9 x + 4 . 

 (b) Subtract 5x3 - 9 x2 + x - 3 from       x2+ x +1. 


(a) Add 6x5 -10x2 + x - 45 to 13x2 - 9 x + 4 . 

The first thing which we have to do is in fact write down the operation which we are being asked to do.

                        (6 x5 -10 x2 + x - 45) +(13x2  - 9 x + 4)

In this case the parenthesis is not needed since we are going to add the two polynomials. They are there basically to make clear the operation which we are performing.  In order to add two polynomials all that we do is combine such as terms. It means that for each term with the similar exponent we will add or subtract the coefficient of that term.

In this case this is,

 (6x5 -10x2 + x - 45) + (13x2 - 9 x + 4) =6 x5 + (-10 + 13) x2 + (1 - 9) x - 45 + 4

                                                             = 6x5 + 3x2 - 8x - 41

(b) Subtract 5x3 - 9 x2 + x - 3 from x2 + x + 1.

Again, let's write down the operation we are doing here.  We will also need to be very careful with the order that we write things down in.  Here is the operation

                                                  x2 + x + 1 - (5x3  - 9 x2 + x - 3)

This time the parentheses about the second term are absolutely needed.  We are subtracting the whole polynomial & the parenthesis has to be there to ensure we are actually subtracting the whole polynomial.

In performing the subtraction the first thing which we'll do is distribute the minus sign through the parenthesis. It means that we will alter the sign on every term into the second polynomial. Notice that all we are actually doing here is multiplying a "-1" to the second polynomial via the distributive law.  After distributing the minus through the parenthesis again we combine like terms.

Here is the work for this problem.

x2 + x + 1 - (5x3  - 9 x2 +x - 3) = x2 + x + 1 - 5x3 + 9 x2 - x + 3

                                                 = -5x3 + 10x2 + 4

Notice that sometimes a term will totally drop out after combing such as terms as the x did here. It will happen on occasion thus don't get excited about it while it does happen.

Now let's move over multiplying polynomials.  Again, it's best to do these in an instance.

Posted Date: 4/6/2013 2:28:13 AM | Location : United States

Related Discussions:- Operation on polynomial, Assignment Help, Ask Question on Operation on polynomial, Get Answer, Expert's Help, Operation on polynomial Discussions

Write discussion on Operation on polynomial
Your posts are moderated
Related Questions

In the previous section we looked at the method of undetermined coefficients for getting a particular solution to p (t) y′′ + q (t) y′ + r (t) y = g (t)    .....................

i need help with exponents and how to add them

If 4x^4+9x^4=64 then the maximum value of x^2+y^2 is solution) From the eq. finding the value of x^2 and putting it in x^2 + y^2.we get 2nd eq. differentiating that and putting

Need Solution Find (dy)/( dx) for; (i). y = x 7 (ii). y = x 2γ (iii). y = x -3 (iv). y = x

What is the Definition of Finite and infinite sets?

Find the third vertex of a triangle if its two vertices are (-1, 4) and (5, 2) and mid point of one side is (0, 3).

Difference Between Experiment and Outcome Experiment is an operation that produces outcomes which can be observed. Outcome/Event is the result of an experiment.

find the area of this figure in square millimeter measure each segment to the nearest millmeter

If a telephone pole weighs 11.5 pounds per foot, how much does a 32-foot pole weigh? Multiply 11.5 by 32; 11.5 × 32 = 368 pounds.