Operation on polynomial, Mathematics

Perform the denoted operation for each of the following.

 (a) Add 6x5 -10x2 + x - 45 to 13x2 - 9 x + 4 . 

 (b) Subtract 5x3 - 9 x2 + x - 3 from       x2+ x +1. 


(a) Add 6x5 -10x2 + x - 45 to 13x2 - 9 x + 4 . 

The first thing which we have to do is in fact write down the operation which we are being asked to do.

                        (6 x5 -10 x2 + x - 45) +(13x2  - 9 x + 4)

In this case the parenthesis is not needed since we are going to add the two polynomials. They are there basically to make clear the operation which we are performing.  In order to add two polynomials all that we do is combine such as terms. It means that for each term with the similar exponent we will add or subtract the coefficient of that term.

In this case this is,

 (6x5 -10x2 + x - 45) + (13x2 - 9 x + 4) =6 x5 + (-10 + 13) x2 + (1 - 9) x - 45 + 4

                                                             = 6x5 + 3x2 - 8x - 41

(b) Subtract 5x3 - 9 x2 + x - 3 from x2 + x + 1.

Again, let's write down the operation we are doing here.  We will also need to be very careful with the order that we write things down in.  Here is the operation

                                                  x2 + x + 1 - (5x3  - 9 x2 + x - 3)

This time the parentheses about the second term are absolutely needed.  We are subtracting the whole polynomial & the parenthesis has to be there to ensure we are actually subtracting the whole polynomial.

In performing the subtraction the first thing which we'll do is distribute the minus sign through the parenthesis. It means that we will alter the sign on every term into the second polynomial. Notice that all we are actually doing here is multiplying a "-1" to the second polynomial via the distributive law.  After distributing the minus through the parenthesis again we combine like terms.

Here is the work for this problem.

x2 + x + 1 - (5x3  - 9 x2 +x - 3) = x2 + x + 1 - 5x3 + 9 x2 - x + 3

                                                 = -5x3 + 10x2 + 4

Notice that sometimes a term will totally drop out after combing such as terms as the x did here. It will happen on occasion thus don't get excited about it while it does happen.

Now let's move over multiplying polynomials.  Again, it's best to do these in an instance.

Posted Date: 4/6/2013 2:28:13 AM | Location : United States

Related Discussions:- Operation on polynomial, Assignment Help, Ask Question on Operation on polynomial, Get Answer, Expert's Help, Operation on polynomial Discussions

Write discussion on Operation on polynomial
Your posts are moderated
Related Questions
|a.x|=1 where x = i-2j+2k then calculate a

three times the first of the three consecutive odd integers is 3 more than twice the third integer. find the third integer.

Write a function that computes the product of two matrices, one of size m × n, and the other of size n × p. Test your function in a program that passes the following two matrices t

Even and Odd Functions : This is the final topic that we have to discuss in this chapter.  Firstly, an even function is any function which satisfies,

A car travels at a rate of (4x2 - 2). What is the distance this car will travel in (3x - 8) hours? Use the formula distance = rate × time. Through substitution, distance = (4x2

Each week Jaime saves $25. How long will it take her to save $350? Divide $350 by $25; 350 ÷ 25 = 14 weeks.

Binormal Vector - Three Dimensional Space Next, is the binormal vector.  The binormal vector is illustrated to be, B → (t) = T → (t) * N → (t) Since the binormal vecto

Factor following.                    x 2 - 20 x + 100 Solution In this case we've got three terms & it's a quadratic polynomial.  Notice down as well that the constant

ball are arranged in rows to form an equilateral triangle .the firs row consists of one abll,the second of two balls,and so on.If 669 more balls are added,then all the balls canbe