Open and closed position of the armature and flux linkage, Mechanical Engineering

Q. For an electromagnetic system, show that the energy stored in a magnetic field is equal to the area enclosed b/w magnetization curves for open and closed position of the armature and flux linkage - current locus during the armature moment.

Sol. Consider a simple magnetic relay. Initially the armature is in the open position. When switch S is closed, current I is established in the N turn - coil. The flux set up depends upon mmf Ni and the reluctance of the magnetic path. The magnetic field thus produced, creates North and South poles and as a result of it., there is established a magnetic force tending to shortern the air - gap.

 

        If the armature is not allowed to move, the mechanical work done, dWmech. Is zero.

 

          Therefore,

 

               dWelec = 0 + dWfld

 

               (dWelec =   dWmech. + dWfld)

 

          This shows that when the movable part of any physical system is kept fixed, the entire electrical energy input is stored in the magnetic field.

 

                  dWfld = dWelec

 

and            dWfld = dWelec = i.dψ = F.dΦ

 

  If the initial flux is zero, then the magnetic field energy stored Wfld, in establishing a flux Φ1 or flux linkage ψ1, is given by

 

 

                  Wfld = ψ1 0(i.d ψ1 = Φ1 0(F.d Φ

 

I and F must be expressed in terms of ψ and Φ.

When the armature is held in open position then the most of the m.m.f. is consumed in the air - gap and it is likely that magnetic saturation may not occur.

 

             Wfld = Φ1 0( dWfld = Φ1 0(F.dQ = area OABO

 

            Wfld = ψ1 0(d. Wfld = ψ1 0(i.d ψ1 = area OABO

 

 

        Area OACO = (d. Wfld = F1 0( Φ.dF =   i1 0( ψ.di

 

         This area OACO is called the co - energy Wfld

 

W'fld = F1 0( Φ.dF =   i1 0( ψ.di

 

Above, ψ and Φ must be expressed in terms of F and I respectively. Co - energy has no physical significance, it is however useful in calculating the magnetic forces.

 

                        With no magnetic saturation,

 

                                   Area OABO = Area OACO

 

 Or                              Wfld =   W'fld

 

 And                     Wfld +  W'fld  = Area OCABO =  Φ1F1 = ψ1i1

 

In general, for magnetic circuit,

 

                                        Wfld =   W'fld  = 1/2 ψi = 1/2FΦ

Posted Date: 7/23/2012 1:19:41 AM | Location : United States







Related Discussions:- Open and closed position of the armature and flux linkage, Assignment Help, Ask Question on Open and closed position of the armature and flux linkage, Get Answer, Expert's Help, Open and closed position of the armature and flux linkage Discussions

Write discussion on Open and closed position of the armature and flux linkage
Your posts are moderated
Related Questions
procedure to find resultant of several forces acting at a point

(a) Illustrate reversible, irreversible and Quasi-static process with examples. (b) What do you mean by terms change of state, path, process, property, cycle. (c) Distinguish

Evaluate the motion of the system: If in above Example, the block A is resting on an inclined plane at 45 o to horizontal as illustrative in Figure, find out the motion of th

Explain the Automation in Machining? The word "automatic" is derived from Greek and it means "self-moving or "self thinking". The word "automation" has been used to refer to a

What is Wire-frame Wire-frame models use the simplest data structures and they are ambiguous. Wire frame is a well-known example that consists of 16 vertices and 32 edges. We



(a) Derive a mathematical expression for the efficiency of a dual cycle. (b) An oil Engine working on a dual combustion cycle has a compression ratio 10 and cut-off takes place

Symmetric Central Force A central force is spherically if the magnitude of the force does not depend on the direction (angles  θ , or  Ø ) of the particle but only on distance

why pre sintering needed in powder metallurgy