Open and closed position of the armature and flux linkage, Mechanical Engineering

Q. For an electromagnetic system, show that the energy stored in a magnetic field is equal to the area enclosed b/w magnetization curves for open and closed position of the armature and flux linkage - current locus during the armature moment.

Sol. Consider a simple magnetic relay. Initially the armature is in the open position. When switch S is closed, current I is established in the N turn - coil. The flux set up depends upon mmf Ni and the reluctance of the magnetic path. The magnetic field thus produced, creates North and South poles and as a result of it., there is established a magnetic force tending to shortern the air - gap.

 

        If the armature is not allowed to move, the mechanical work done, dWmech. Is zero.

 

          Therefore,

 

               dWelec = 0 + dWfld

 

               (dWelec =   dWmech. + dWfld)

 

          This shows that when the movable part of any physical system is kept fixed, the entire electrical energy input is stored in the magnetic field.

 

                  dWfld = dWelec

 

and            dWfld = dWelec = i.dψ = F.dΦ

 

  If the initial flux is zero, then the magnetic field energy stored Wfld, in establishing a flux Φ1 or flux linkage ψ1, is given by

 

 

                  Wfld = ψ1 0(i.d ψ1 = Φ1 0(F.d Φ

 

I and F must be expressed in terms of ψ and Φ.

When the armature is held in open position then the most of the m.m.f. is consumed in the air - gap and it is likely that magnetic saturation may not occur.

 

             Wfld = Φ1 0( dWfld = Φ1 0(F.dQ = area OABO

 

            Wfld = ψ1 0(d. Wfld = ψ1 0(i.d ψ1 = area OABO

 

 

        Area OACO = (d. Wfld = F1 0( Φ.dF =   i1 0( ψ.di

 

         This area OACO is called the co - energy Wfld

 

W'fld = F1 0( Φ.dF =   i1 0( ψ.di

 

Above, ψ and Φ must be expressed in terms of F and I respectively. Co - energy has no physical significance, it is however useful in calculating the magnetic forces.

 

                        With no magnetic saturation,

 

                                   Area OABO = Area OACO

 

 Or                              Wfld =   W'fld

 

 And                     Wfld +  W'fld  = Area OCABO =  Φ1F1 = ψ1i1

 

In general, for magnetic circuit,

 

                                        Wfld =   W'fld  = 1/2 ψi = 1/2FΦ

Posted Date: 7/23/2012 1:19:41 AM | Location : United States







Related Discussions:- Open and closed position of the armature and flux linkage, Assignment Help, Ask Question on Open and closed position of the armature and flux linkage, Get Answer, Expert's Help, Open and closed position of the armature and flux linkage Discussions

Write discussion on Open and closed position of the armature and flux linkage
Your posts are moderated
Related Questions
Determine the relative error in the function y = ax 1 m1 x 2 m2 ........x n mn If u = 4x 2 y 3 / Z 4 and error in x, y, z be 0.a, compute the relative maximum error in u ta

A diluted polymer solution with a density of 1130 kg/m3 was extruded through a capillary tube of 3.5 mm internal diameter and 1 m long. The following results were obtained at 25°C.

The extent of a hazardous area depends on the rate of release, ventilation conditions, and fluid properties and is defined by the relevant regional or country standards. The pot

Find out load carried and compressive stress: The concrete column 300mm x 300mm in section can be reinforced by 10 longitudinal 20mm diameter round steel bars. The column car


Question The three freight cars are rolling along the horizontal track with the velocities shown in the Figure. After the impacts occur the three cars become coupled together a


Pumps should be grouped together with good maintenance access to the motor, and good personnel access to seals and suction / discharge valves. Maintenance access should allow for r

Represent moment Graphically: How you represent moment Graphically? Sol.: Consider force F which is represented in magnitude and direction, by   line AB . L

three indications of centrifugal pump cavitating