Non - sl languages, Theory of Computation

Assignment Help:

Application of the general suffix substitution closure theorem is slightly more complicated than application of the specific k-local versions. In the specific versions, all we had to do was to find two strings in which the same sequence of k - 1 adjacent symbols occurred which when cross-spliced witness the failure of suffix substitution closure. Here we have to be prepared for to show that for any k, such a pair of strings exist. Fortunately, we don't have to show that there is a single pair of strings that works for all k, only that for all k there is some pair. In other words, the pairs we use may depend on k. One useful way to organize this is known as an adversary argument. The theorem can be stated formally as:

579_Non - SL Languages.png

The idea is to interpret this as the rules of a game. You are attempting to show that the property does not hold; your adversary is attempting to show that it does. The universally bound variables (∀L) and (∀u , v , u , v , x) are your choices-your plays. The existentially bound variable (∃k) is your adversary's choice-their plays. The game proceeds from the outside of the formula in:

• You choose L the language you intend to prove is not SL.

• Your adversary, claiming that there is a k-local automaton that recognizes it, chooses k. Presumably, their choice of k will depend on your choice of L. Not even this adversary is going to claim that all languages are SL.

• You now choose two strings u1xv1 and u2xv2. Again, your choice should depend on the specific value of k your adversary chose (as well, of course, as the L you chose to start with).

• You win iff the two strings you chose witness that the language does not satisfy the theorem, i.e., iff

- u1xv1 and u2xv2 are both in L and

- u1xv2 is not in L.

Under this interpretation of the theorem, a proof that a given language is non SL consists of a strategy that always leads to a win whenever you start with L as your initial choice.


Related Discussions:- Non - sl languages

Agents architecture, Describe the architecture of interface agency

Describe the architecture of interface agency

Construct a regular expression, Given any NFA A, we will construct a regula...

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with

Prove the arden''s theorem, State and Prove the Arden's theorem for Regular...

State and Prove the Arden's theorem for Regular Expression

Turing machine, Design a turing machine to compute x + y (x,y > 0) with x a...

Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)

Possibility of recognizing the palindrome language, Computer has a single F...

Computer has a single FIFO queue of ?xed precision unsigned integers with the length of the queue unbounded. You can use access methods similar to those in the third model. In this

CNF, S-->AAA|B A-->aA|B B-->epsilon

S-->AAA|B A-->aA|B B-->epsilon

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Prepare the consolidated financial statements, Prepare the consolidated fin...

Prepare the consolidated financial statements for the year ended 30 June 2011. On 1 July 2006, Mark Ltd acquired all the share capitall of john Ltd for $700,000. At the date , J

Hhhhhhhhhhhhhhhhh, Ask question #hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh...

Ask question #hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhMinimum 100 words accepted#

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd