Myhill-nerode, Theory of Computation

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes.

Proof: For the "only if" direction (that every recognizable language has ?nitely many Nerode equivalence classes) observe that L ∈ Recog iff L = L(A) for some DFA A and that if δ(q0,w) = δ(q0, u) (i.e., if the path from the start state labeled w and that labeled u end up at the same state) then w ≡L u. This is a consequence of the fact that the state ˆ δ(q0,w) encodes all the information the automaton remembers about the string w. If v extends w to wv ∈ L(A) then v is the label of a path to an accepting state from δ(q0,w). Since this is the same state as δ(q0, u) the same path witnesses that uv ∈ L. Similarly, if the path leads one to a non-accepting state then it must necessarily lead the other to the same state. The automaton has no way of distinguishing two strings that lead to the same state and, consequently, the language it recognizes cannot distinguish them. Since A is deterministic, every string in Σ* labels a path leading to some state, hence the equivalence classes corresponding to the states partition Σ*. Since the automaton has ?nitely many states, it distinguishes ?nitely many equivalence classes.

Posted Date: 3/25/2013 1:20:59 AM | Location : United States







Related Discussions:- Myhill-nerode, Assignment Help, Ask Question on Myhill-nerode, Get Answer, Expert's Help, Myhill-nerode Discussions

Write discussion on Myhill-nerode
Your posts are moderated
Related Questions
Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explici

Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev


conversion from nfa to dfa 0 | 1 ___________________ p |{q,s}|{q} *q|{r} |{q,r} r |(s) |{p} *s|null |{p}

Find a regular expression for the regular language L={w | w is decimal notation for an integer that is a multiple of 4}

This was one of the ?rst substantial theorems of Formal Language Theory. It's maybe not too surprising to us, as we have already seen a similar equivalence between LTO and SF. But

Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a

We will specify a computation of one of these automata by specifying the pair of the symbols that are in the window and the remainder of the string to the right of the window at ea

write short notes on decidable and solvable problem

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa