Myhill graph of the automaton, Theory of Computation

Assignment Help:

Exercise:  Give a construction that converts a strictly 2-local automaton for a language L into one that recognizes the language Lr. Justify the correctness of your construction. (That is, verify that the language that is recognized by the automaton your construction produces is actually the reversal of the language the given automaton recognizes.) What is the effect of your construction on the Myhill graph of the automaton?


Related Discussions:- Myhill graph of the automaton

IT PRoject Management, What are the benefits of using work breakdown struct...

What are the benefits of using work breakdown structure, Project Management

Emptiness problem, The Emptiness Problem is the problem of deciding if a gi...

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P

Reducibility among problems, A common approach in solving problems is to tr...

A common approach in solving problems is to transform them to different problems, solve the new ones, and derive the solutions for the original problems from those for the new ones

Automaton for finite languages, We can then specify any language in the cla...

We can then specify any language in the class of languages by specifying a particular automaton in the class of automata. We do that by specifying values for the parameters of the

Instantaneous description of an fsa, De?nition Instantaneous Description of...

De?nition Instantaneous Description of an FSA: An instantaneous description (ID) of a FSA A = (Q,Σ, T, q 0 , F) is a pair (q,w) ∈ Q×Σ* , where q the current state and w is the p

Decision problems of regular languages, We'll close our consideration of re...

We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.

Kleene closure, So we have that every language that can be constructed from...

So we have that every language that can be constructed from SL languages using Boolean operations and concatenation (that is, every language in LTO) is recognizable but there are r

Complement - operations on languages, The fact that SL 2 is closed under i...

The fact that SL 2 is closed under intersection but not under union implies that it is not closed under complement since, by DeMorgan's Theorem L 1 ∩ L 2 = We know that

Ogdens lemma, proof ogdens lemma .with example i am not able to undestand ...

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd