Measure phase angle by using an oscilloscope, Electrical Engineering

1. Introduction:

Theory:  Phase angle is defined as the number of degrees separating two sine waves of the same frequency. The Phase shift is defined as any change that occurs in the phase of one quantity, or in the phase difference between two or more quantities.

For infinitely long sinusoids, a change in Θ is the same as a shift in time, such as a time-delay.  If x (t) is delayed (time-shifted) by 1/4   of its cycle, it becomes:

1070_measure phase angle by using an oscilloscope.png

whose "phase" is now  Θ- (Π / 2)  It has been shifted by (Π / 2) radians.

Material Required: Oscilloscope, frequency generator, connecting wires, resistor, capacitor, potentiometer, multimeter.

Description and Aim: To measure phase angle by using an oscilloscope. The phase angle between two waveforms is calculated by ensuring that they are of same frequency. The amplitude can differ for both these waveforms. An input waveform will be passed through circuit which may make some changes in the phase of this waveform. Hence, the phase angle between the input and output waveforms is measured using the oscilloscope where one channel displays the reference waveform and other channel displays the second signal.

2. Method:

Step 1) First, make a circuit using a capacitor and a resistor. The potentiometer can also be used and turn it fully otherwise. The capacitor creates a phase shift in the waveform passing through it.

Step 2) Connect generator to phase angle circuit block. Using an oscilloscope, set generator for a sine wave output 6Vpk-pk at 1000 Hz.

Step 3) Connect channel 1 probe to input of the generator and channel 2 probe to output across C1. Ensure that oscilloscope trigger source control is set to channel 1. Switch from the vertical mode to ALT. Set ground references of both the channel to the graticule line. The phase angle between channel 1 and channel 2 is approximately zero at this moment.

Step 4) Slowly turn the potentiometer R2 completely clockwise. It makes the phase shift to right direction.

Step 5) Switch vertical mode to channel 1 and adjust time base and variable time base controls on oscilloscope so that one cycle of waveform is having exactly 8 divisions.

Step 6) Calculate phase angle between the two waveforms.

3. Results:

Frequency of waveform = 1000 Hz

V(pk-pk) = 6V

No of horizontal divisions for one cycle of waveforms = 8

Measure of one division = 45°

Phase angle  = 8 X 45° /  5  = 360° / 5   = 72°

(how did u get 5 in above line...mention that here)

4. Discussion:

Phase measurement of a waveform using oscilloscope is done. Prime source of error is resolution error, which is reduced by ensuring phase crossings align with ticks of oscilloscope.  If this experiment needs to be repeated for higher frequencies time step has to be properly changed to avoid quantization error.

Posted Date: 3/2/2013 1:08:56 AM | Location : United States







Related Discussions:- Measure phase angle by using an oscilloscope, Assignment Help, Ask Question on Measure phase angle by using an oscilloscope, Get Answer, Expert's Help, Measure phase angle by using an oscilloscope Discussions

Write discussion on Measure phase angle by using an oscilloscope
Your posts are moderated
Related Questions
An  electric  heater  element  is  made  of  Nichrome  wire  having  resistivity  equal  to 100 ×10 -8 ohm-metre. The diameter of the wire is 0.3 mm. Calculate the length of the w

Q.  Explain the working of spectrum analyzer and its applications. OR Draw block diagram of spectrum analyzer and explain its operation write down its importance applica

What we have seen for practical power supplies applies to any  electrical circuit provided it contains only linear components

Three equal impedances of D ohms resistance and C inductive reactance are connected in a DELTA configuration. The line voltage is A00 volts. Determine the line current, phase cur

Q.   Enumerate different types of errors in  measurement. How can these errors be minimized.                Sol. Types of errors: Errors may arise from different sources and

mirror circuit

Q. Show how a 16-to-1 multiplexer can be used to implement the logic function described by the following truth table.

find current across r3 with two voltage as sources

Damage of revolving metallic disc due to tampering

Find the current flow through resistor 12 Ω using Thevenin's Theorem.