Maximization problem, Game Theory

Assignment Help:

Two individuals (i ∈ {1, 2}) work independently on a joint project. They each independently decide how much e ort ei they put. E ort choice has to be any real number between 0 and 1 (ei ∈ [0, 1] not just 0 or 1). The cost of putting an amount of e ffort ei is n e2i/2, where n is a parameter greater or equal than 2. If individual i puts e ffort ei, then he succeeds with probability ei and fails with probability 1 - ei. The probability of success of the two agents are independent; this means that both succeed with probability e1x e2, 1 succeeds and 2 fails with probability e1 x(1 - e2), 1 fails and 2 succeeds with probability (1 - e1)e2, and both fail with probability (1 - e1)  (1 - e2).

If at least one of the individuals succeeds then, independently of who did succeed, both individuals get a payo of 1. If none of them succeeds, both individuals get 0. Therefore, each individual is a ected by the action of the other. However, individuals choose the level of e ort that maximizes their own expected utility (bene t minus cost of e ort).

(a) Write down the expected utility of individuals 1 and 2 (note that the utility of 1 depends on the e orts of 1 and 2 and the utility of 2 depends on the e orts of 1 and 2). [Hint. The expected bene t of 1 is the probability that 1 and/or 2 succeed times the payo if 1 and/or 2 succeed plus the probability that both 1 and 2 fail times the payo if both 1 and 2 fail.]

(b) Find the Nash equilibrium of this game, that is, the optimal level of e ort. Find the expected utility of each individual in equilibrium (use the rst-order condition and make sure that the second-order condition is satis ed). Suppose that a benevolent dictator can choose the  level of e ort that both individuals must exert. He chooses the e ort levels that maximize the sum of the expected utilities of both agents (these e orts are also called socially optimal levels).

(c) Write down the maximization problem of the benevolent dictator.

(d) Find the e ort levels that the dictator imposes on each individual (use the rst-order condition and assume that the second-order condition is satis ed). Find the expected utility of each individual.

(e) Compare the e ort level and nal utility of each individual in the cases of Nash Equilibrium (sel sh individual maximization) and benevolent dictatorship.

 


Related Discussions:- Maximization problem

Beard strategy, #questi1 A, Explain how a person can be free to choose but...

#questi1 A, Explain how a person can be free to choose but his or her choices are casually determined by past event 2 B , Draw the casual tree for newcomb''s problem when Eve ca

Find the nash equilibria of game - bimatrix of strategies, Players 1 and 2 ...

Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name shares they would like to keep s 1 and s 2 . Furthermore, players' choices have to be

Ring, A collection of colluding bidders. Ring members comply with rig bids ...

A collection of colluding bidders. Ring members comply with rig bids by agreeing to not bid against one another, either by avoiding the auction or by putting phony (phantom) bids

Extensive games with sumultaneous moves, consider the three player game in ...

consider the three player game in question 2 in assignment 1. Assume now that player 3 moves first. Players 1 and 2

Game :the tire story, GAME 2 The Tire Story Another game that we have ...

GAME 2 The Tire Story Another game that we have successfully played in the first lecture is based on the “We can’t take the exam; we had a flat tire”. Even if the students hav

Bidding increment, A bidding increment is defined by the auctioneer as the ...

A bidding increment is defined by the auctioneer as the least amount above the previous bid that a new bid must be in order to be adequate to the auctioneer. For example, if the in

Game playing in class-2 players take turns choosing a number, Problem:-Two ...

Problem:-Two players take turns choosing a number between 1 and 10 (inclusive), and a cumulative total of their choices is kept. The player to take the total exactly to 100 is the

Identify the pure strategy equilibria, Consider the following three games (...

Consider the following three games (Chicken, Matching Pennies, Stag Hunt): Chicken Player 2 Player 1 D V D -100;-100 10;-10 V -10; 10 -1;-1 Matching Pennies Pla

Bayes, Eighteenth century British mathematician who recognized a method for...

Eighteenth century British mathematician who recognized a method for probabilistic mathematical inference. His Bayes Theorem, published posthumously, treats probability as a logic.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd