Linux kernel components, Operating System

Example 1.  The diagram illustrating the data structures of in-memory VFS objects and on-disk objects and their relationships on slide 24 of the lecture notes OSD.4. This diagram illustrates A1, A2, A4 and A5.

Example 2.  The diagrams illustrating the data structures of the internal structure of a small file system tree in Unix on slides 9 and 10 of the lecture notes OSD.4. These diagrams illustrate A2, A4 and A5.

Example 3.  The diagrams illustrating the data structures of the Unix file system directory on-disk organization on slides 12 and 13 of the lecture notes OSD.4. These diagrams illustrate A2, A4 and A5.

Example 4.  The diagrams illustrating the VFS mount tree of vfsmount Structures on slide 72 of the lecture notes OSD.4. These diagrams illustrate A2, A4 and A5.

Example 5. The diagram illustrating the ext2_sb_info data structure in Figure 18-4 on page 752 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A3, A4 and A5.

Example 6. The diagram illustrating an example of the Ext2 directory in Figure 18-3 on page 749 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A2 and A4.

Example 7. The diagram illustrating a buffer page including four buffers and their buffer heads in Figure 15-2 on page 615 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A4, and A5.

Example 8. The diagram illustrating data structures for file memory mapping in Figure 16-2 on page 659 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A4, and A5.

Example 9. The diagram illustrating the most important data structures related to signal handling in Figure 11-1 on page 426 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A4 and A5.

Example 10. The diagram illustrating adding or removing a linear address interval in Figure 9-1 on page 359 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A4, A5 and A7.

Example 11. The diagram illustrating invoking a system call in Figure 10-1 on page 400 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A3, A4, A5, A6 and A7.

Example 12. The diagram illustrating the flow diagram of the page fault handler in Figure 9-5 on page 378 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A5 and A6.

Example 13. The diagram illustrating kernel components affected by a block device operation in Figure 14-1 on page 561 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A4 and A5.

Example 14. The diagram illustrating linking the block device descriptors with the other structures of the block subsystem in Figure 14-3 on page 587 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A4 and A5.

Example 15. The diagram illustrating the runqueue structure and the two sets of runnable processes in Figure 7-1 on page 268 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A2 and A4.

All of the diagrams in the book "Understanding the Linux Kernel" 3rd Edition are good examples of different types of diagrams that can help readers understand various aspects of how the various subsystems of the Linux kernel that provide some basic kernel functionality works.

Posted Date: 3/8/2013 12:08:00 AM | Location : United States







Related Discussions:- Linux kernel components, Assignment Help, Ask Question on Linux kernel components, Get Answer, Expert's Help, Linux kernel components Discussions

Write discussion on Linux kernel components
Your posts are moderated
Related Questions
socket based fortune teller sever.your program should create a server that listens to a specific port when a client receives a connection the server should respond with a random fo

Write a C program that illustrates the creation of child process using fork system call. One process finds sum of even series and other process finds sum of odd series.

Define FIFO Page Replacement Algorithm This policy simply eliminates pages in the order they arrived in the main memory. By using this policy we simply remove a page based upo

Write pseudo code to implement the pthread_create wrapper of the Tern memoizer. Note you need to describe your data structure for maintaining deterministic thread IDs. In addition,

Consider the following C program where M, N, K are predefined constants. Assume int is 4 bytes. Suppose this program is run on a machine with 4KB page size and 32 TLB entries. Init

Inverted page table In page table the page table has one entry for every page that the process is using. The operating system must translate this reference into a physical memo

Q. In the IBM/370 memory protection is offered through the use of keys. A key is a 4-bit quantity every 2K block of memory has a key (the storage key) associated with it. The CPU

Q. Why might a system utilize interrupt-driven I/O to manage a single serial port however polling I/O to manage a front-end processor such as a terminal concentrator? A

what is an operating system?

Q. Discuss the advantages as well as disadvantages of caching name translations for computers located in remote domains. Answer: There is a performance benefit to caching nam