Linux kernel components, Operating System

Example 1.  The diagram illustrating the data structures of in-memory VFS objects and on-disk objects and their relationships on slide 24 of the lecture notes OSD.4. This diagram illustrates A1, A2, A4 and A5.

Example 2.  The diagrams illustrating the data structures of the internal structure of a small file system tree in Unix on slides 9 and 10 of the lecture notes OSD.4. These diagrams illustrate A2, A4 and A5.

Example 3.  The diagrams illustrating the data structures of the Unix file system directory on-disk organization on slides 12 and 13 of the lecture notes OSD.4. These diagrams illustrate A2, A4 and A5.

Example 4.  The diagrams illustrating the VFS mount tree of vfsmount Structures on slide 72 of the lecture notes OSD.4. These diagrams illustrate A2, A4 and A5.

Example 5. The diagram illustrating the ext2_sb_info data structure in Figure 18-4 on page 752 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A3, A4 and A5.

Example 6. The diagram illustrating an example of the Ext2 directory in Figure 18-3 on page 749 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A2 and A4.

Example 7. The diagram illustrating a buffer page including four buffers and their buffer heads in Figure 15-2 on page 615 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A4, and A5.

Example 8. The diagram illustrating data structures for file memory mapping in Figure 16-2 on page 659 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A4, and A5.

Example 9. The diagram illustrating the most important data structures related to signal handling in Figure 11-1 on page 426 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A4 and A5.

Example 10. The diagram illustrating adding or removing a linear address interval in Figure 9-1 on page 359 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A4, A5 and A7.

Example 11. The diagram illustrating invoking a system call in Figure 10-1 on page 400 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A3, A4, A5, A6 and A7.

Example 12. The diagram illustrating the flow diagram of the page fault handler in Figure 9-5 on page 378 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A5 and A6.

Example 13. The diagram illustrating kernel components affected by a block device operation in Figure 14-1 on page 561 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A4 and A5.

Example 14. The diagram illustrating linking the block device descriptors with the other structures of the block subsystem in Figure 14-3 on page 587 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A4 and A5.

Example 15. The diagram illustrating the runqueue structure and the two sets of runnable processes in Figure 7-1 on page 268 of "Understanding the Linux Kernel" 3rd Edition. This diagram illustrates A1, A2 and A4.

All of the diagrams in the book "Understanding the Linux Kernel" 3rd Edition are good examples of different types of diagrams that can help readers understand various aspects of how the various subsystems of the Linux kernel that provide some basic kernel functionality works.

Posted Date: 3/8/2013 12:08:00 AM | Location : United States







Related Discussions:- Linux kernel components, Assignment Help, Ask Question on Linux kernel components, Get Answer, Expert's Help, Linux kernel components Discussions

Write discussion on Linux kernel components
Your posts are moderated
Related Questions
In modern operating systems, applications do not directly access the physical memory. Instead, they use so-called virtual memory, where each virtual address is translated to a phys

MEMORY MANAGEMENT USING LINK LISTS The first one is for showing it is process or hole, second is for starting address and third is for length of the process and last is a point

Write a note on semaphores A semaphore is a tool meant for synchronizing multiple processes trying to access a shared variable. That is a semaphore is used to deal with the cri

Q. Consider the following page-replacement algorithms. Rank the algorithms on a five-point scale from "bad" to "perfect" according to their page-fault rate. Detach those algorithm

How is memory management done using bit maps? A bit map is here in this we signify the bit value as 0 or 1. 1-hole 0-process In this we are able to represent the proce

Write a short note about process. Unceremoniously, a process is a program in implementation. A process is too much than the program code, which is occasionally known as the tex

Grouping Threads That Execute Similar Functions   Thread Groups are generally used to group threads that execute similar functions of the application program. For instance, if

How can the deadlock be prevented Bankers algorithm : The Resource allocation graph algorithm isn't applicable to a resource allocation system with multiple instances of every

Dynamic scheduling : The number of thread in a program may be changed during the course of operation. Dynamic priority scheduling is a kind of scheduling algorithm in which the pr

Q. Consider the subsequent page reference string: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6. How many page faults would take place for the following replace