## linear programming , Mathematics

Assignment Help:
use the simplex method to solve the following lp problem.
max z = 107x1 + x2 + 2x3
subject to 14x1 + x2 - 6x3 + 3x4 = 7
16x1 + x2 - 6x3 < = 5
3x1 - x2 - x3 < = 0
x1,x2,x3,x4 > = 0

#### Simplify, 3 3/4+(1 1/49*7/10)

3 3/4+(1 1/49*7/10)

#### Find out the domain of function - three dimensional space, Find out the dom...

Find out the domain of each of the following.  (a) f (x,y) = √ (x+y) (b) f (x,y) = √x+√y  (c) f (x,y) = ln (9 - x 2 - 9y 2 ) Solution (a) In this example we know

#### Dot product - vector, Dot Product- Vector The other topic for discu...

Dot Product- Vector The other topic for discussion is that of the dot product.  Let us jump right into the definition of dot product. There is given that the two vectors a

#### Area of regular polygon, Suppose a  regular polygon , which is an N-sided w...

Suppose a  regular polygon , which is an N-sided with equal side lengths S and similar angles at each corner. There is an  inscribed circle  to the polygon that has center C and ba

#### Compute projection scale factor, 1. A survey line on campus is measured to ...

1. A survey line on campus is measured to be 1000.00 ft long on horizontal ground. The elevation of the line is 700.00 feet and the geoid separation from ellipsoid to geoid is -110

#### Equivalent fractions, what is 6/36 as two equivalent fractions 2/12 as tw...

what is 6/36 as two equivalent fractions 2/12 as two equivalent fractions 4/28 3/21 2/11 4/13=8/x 12/30=n/90 q/54=2/9 3/7 14/h=7/20

can you help me

#### Fractions, how to add a fraction with an uncommon denomoninator

how to add a fraction with an uncommon denomoninator

#### Find the depth of water in the pond, A lotus is 2m above the water in a pon...

A lotus is 2m above the water in a pond. Due to wind the lotus slides on the side and only the stem completely submerges in the water at a distance of 10m from the original positio

#### Differentiate hyperbolic functions, Differentiate following functions. (...

Differentiate following functions. (a)  f ( x ) = 2 x 5 cosh x (b) h (t ) = sinh t / t + 1 Solution (a) f ′ ( x ) = 10x 4 cosh x + 2x 5 sinh x (b) h′ (t ) = (t  