Laplace transforms, Programming Languages

There actually isn't all that much to this section. All we are going to do now is work a quick illustration using Laplace transforms for a 3rd order differential equation therefore we can say that we worked, at least one problem for a differential equation whose order was larger than 2.

Everything which we know from the Laplace Transforms section is even valid. The only new bit which we'll require here is the Laplace transform of the third derivative. We can find this from the general formula that we gave while we first started looking at solving initial value problems with Laplace transforms. Now there is that formula,

L ({y′′′} + s3Y(s) - s2 y(0) -  sy′ (0)- y′′(0)

Now there the example for this section

Example: Solve the following initial value problem.

y′′′ - 4y'' = 4t + 3u6(t) e30 - 5t;   y(0) = -3;                      y''(0) = 4

As always we first require making sure the function multiplied with the Heaviside function has been correctly shifted.

y′′′ - 4y'' = 4t + 3u6(t) e - 5(t- 6)

This has been properly shifted and we can notice that we're shifting e-5t. All we require to do now is take the Laplace transform of everything, plug into the initial conditions and answer for Y (s).

Doing all of this provides,

s3Y(s) - s2y(0) - sy'(0) - y''(0) - 4(s2Y(s) - sy(0) - y'(0)) = (4/s2) + ((3 e-6s)/(s + 5))

(s3 - 4s2)Y(s) + 3s2 - 13s = (4/s2) + ((3 e-6s)/(s + 5))

(s3 - 4s2)Y(s) = (4/s2)- 3s2 + 13s  + ((3 e-6s)/(s + 5))

Y(s) = (4- 3s4 + 13s3)/(s4(s - 4))+ ((3 e-6s)/ ((s4(s - 4)) (s + 5)))

Y (s) = F(s) + 3e-6 G(s)

Now we need to partial fraction and inverse transform F(s) and G(s).  We'll leave it to you to verify the details.

Now we require to partial fraction and inverse transform F(s) and G(s).  We'll leave this to you for verify the details.

F(s) = (4- 3s4 + 13s3)/(s4(s - 4)) = ((17/64)/(s - 4)) - (209/s) - ((1/16)/s2) - ((1/4)(2!/2!)/s3) - ((1(3!/3!)/s4)

f(t) = (17/64)e4t - (209/64) - (1/16) t - (1/8)t2 - (1/6)t3

G(s) = 1/(s2(s- 4)(s + 5)) = ((1/44)/(s - 4)) - ((1/225)/(s + 5)) - ((1/400)/s) - ((1/20)/s2)

g(t) = (1/144)e4t - (1/225)e-5t - (1/400) - (1/20)t

Okay, we can here find the solution to the differential equation. Starting along with the transform we find,

Y (s) = F(s) + 3e-6 G(s)             ⇒                     y(t) = f(t) + 3u6(t) g(t -6)

Here f(t) and g(t) are the functions demonstrated above.

Okay, here is the one Laplace transform illustration with a differential equation with order greater than 2. As you can notice the work in the same except for the fact that the partial fraction works (that we didn't demonstrate here) is liable to be messier and more complex.

Posted Date: 4/10/2013 6:39:42 AM | Location : United States







Related Discussions:- Laplace transforms, Assignment Help, Ask Question on Laplace transforms, Get Answer, Expert's Help, Laplace transforms Discussions

Write discussion on Laplace transforms
Your posts are moderated
Related Questions
XML Publishing. Consider the following relational data: Products: pid Name Price Description 323 gizmo

Pseudo code the shows logic for a program that generates a random number, then ask the user to think of a number between 1 and 10

Part 1 Given the following Regular Expressions, explain in detail the pattern accepted by each. Pay attention to all the characters being used. Your answers need not appear with

Windows Card Space Windows Card Space (codenamed Info Card), is Windows now-canceled customer application for the Identification Met system. Card Place is an instance of a class of

How to lunch webcame via viusal studio 2012


Simple Shell In this LAB, you will explore and extend a simple Unix shell interpreter. In doing so, you will learn the basics of system calls for creating and managing process

One of the main strengths of the Perl programming language are its powerful text manipulation features. In this assignment, you will put them to  use for writing a Perl program tha

I have constantly been emailing to get the task i had paid for to be done correctly but no replies from anyone. Not even one acknowledging my emails. Been phoning all the way from

A deterministic finite automaton (DFA) is an abstract machine that reads input from a serial (nonreversible) stream and changes between a finite number of  states according to the