Integer exponents, Mathematics

Assignment Help:

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a bit.

Let's firstly recall the definition of exponentiation along with positive integer exponents.  If a is any number and n is a +ve integer then,

2040_Integer Exponents.png

Thus, for example,

                                                 35=3.3.3.3.3 = 243

We have to also employ this opportunity to remind ourselves regarding parenthesis and conventions which we have in regards to exponentiation & parenthesis. It will be specifically important while dealing with negative numbers.  Assume the following two cases.

                       (-2)4m                 and            -24

These will contain different values once we appraise them.  While performing exponentiation keep in mind that it is only the quantity which is instantly to the left of the exponent which gets the power.

In the initial case there is a parenthesis instantly to the left so this means that everything within the parenthesis gets the power. Thus, in this case we get,

                                       (-2)4 = ( -2) (-2) ( -2) ( -2) = 16

In the second case though, the 2 is instantly to the left of the exponent and thus it is only the 2 that gets the power. The minus sign will stay out in front & will NOT get the power.  In this case we have the following,

                            -24 = - (24 ) = - (2 ⋅ 2 ⋅ 2 ⋅ 2) = - (16) = -16

We put in some added parenthesis to help in illustrate this case. Generally they aren't involved and we would write instead,

                                                         -24  = -2 ⋅ 2 ⋅ 2 ⋅ 2 = -16

The instance of this discussion is to ensure that you pay attention to parenthesis. They are significant and avoiding parenthesis or putting in a set of parenthesis where they don't associate can totally change the answer to a problem.  Be careful.  Also, this warning regarding parenthesis is not just intended for exponents. We will have to be careful with parenthesis during this course.

Now, let's take care of zero exponents & negative integer exponents. In the particular case of zero exponents we have,

                                                                   a0 = 1        provided a ≠ 0

Notice down that it is needed that a not be zero. It is important since 00 is not defined.  Here is a rapid example of this property.

                                                 (-1268)0 = 1

We contain the following definition for -ve exponents.  If a is any non-zero number & n is a +ve integer (yes, positive) then,

                                                  a- n  =  1 /an

Can you see why we needed that a not be zero? Keep in mind that division by zero is not described and if we had let a to be zero we would have gotten division by zero.  Here are a couple of rapid examples for this definition,

5-2  = 1 /52 =  1/25                                             ( -4)-3  = 1/(-4)3 = 1/-64 =-(1/64)

Here are some main properties of integer exponents. Accompanying each of property will be a rapid example to show its use.  We shall be looking at more complex examples after the properties.


Related Discussions:- Integer exponents

Determines the possibility, There is a committee to be selected comprising ...

There is a committee to be selected comprising of 5 people from a group of 5 men and 6 women. Whether the selection is randomly done then determines the possibility of having the g

Fractions, what is equizilent to 2/5

what is equizilent to 2/5

What it means to count-learning to count, What do we understand by "being a...

What do we understand by "being able to count"? Think about the following situation before you answer. Example 1: Three year-old Mini could recite numbers from I to 20 in the co

Find out the next number 320, Find out the next number in the subsequent pa...

Find out the next number in the subsequent pattern. 320, 160, 80, 40, . . . Each number is divided by 2 to find out the next number; 40 ÷ 2 = 20. Twenty is the next number.

Graph ( x + 1)2 /9 -( y - 2)2/4 =1 of hyperbola, Graph  ( x + 1) 2 /9 -( ...

Graph  ( x + 1) 2 /9 -( y - 2) 2 /4 =1 Solution It is a hyperbola. There are in fact two standard forms for a hyperbola.  Following are the basics for each form. H

Polynomials, On dividing p(X)=5x^(4)-4x^(3)+3x^(2)-2x+1 by g(x)=x^(2)+2 if ...

On dividing p(X)=5x^(4)-4x^(3)+3x^(2)-2x+1 by g(x)=x^(2)+2 if q(x)=ax^(2)+bx+c, find a,b and c.

Probability, The probability that a leap year will have 53 sunday is ? and ...

The probability that a leap year will have 53 sunday is ? and how please explain it ? (a)1/7    (b) 2/7    (c) 5/7    (d)6/7 Sol) A leap year has 366 days, therefore 52 weeks i.e

Ratio-categories of situations requiring division , Ratio - situations in ...

Ratio - situations in which we need to compare two quantities in terms of their ratio. (e.g., if Munna weighs 40 Kg. and Munni weighs 50 Kg., find the ratio of their weights.)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd