Integer exponents, Mathematics

Assignment Help:

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a bit.

Let's firstly recall the definition of exponentiation along with positive integer exponents.  If a is any number and n is a +ve integer then,

2040_Integer Exponents.png

Thus, for example,

                                                 35=3.3.3.3.3 = 243

We have to also employ this opportunity to remind ourselves regarding parenthesis and conventions which we have in regards to exponentiation & parenthesis. It will be specifically important while dealing with negative numbers.  Assume the following two cases.

                       (-2)4m                 and            -24

These will contain different values once we appraise them.  While performing exponentiation keep in mind that it is only the quantity which is instantly to the left of the exponent which gets the power.

In the initial case there is a parenthesis instantly to the left so this means that everything within the parenthesis gets the power. Thus, in this case we get,

                                       (-2)4 = ( -2) (-2) ( -2) ( -2) = 16

In the second case though, the 2 is instantly to the left of the exponent and thus it is only the 2 that gets the power. The minus sign will stay out in front & will NOT get the power.  In this case we have the following,

                            -24 = - (24 ) = - (2 ⋅ 2 ⋅ 2 ⋅ 2) = - (16) = -16

We put in some added parenthesis to help in illustrate this case. Generally they aren't involved and we would write instead,

                                                         -24  = -2 ⋅ 2 ⋅ 2 ⋅ 2 = -16

The instance of this discussion is to ensure that you pay attention to parenthesis. They are significant and avoiding parenthesis or putting in a set of parenthesis where they don't associate can totally change the answer to a problem.  Be careful.  Also, this warning regarding parenthesis is not just intended for exponents. We will have to be careful with parenthesis during this course.

Now, let's take care of zero exponents & negative integer exponents. In the particular case of zero exponents we have,

                                                                   a0 = 1        provided a ≠ 0

Notice down that it is needed that a not be zero. It is important since 00 is not defined.  Here is a rapid example of this property.

                                                 (-1268)0 = 1

We contain the following definition for -ve exponents.  If a is any non-zero number & n is a +ve integer (yes, positive) then,

                                                  a- n  =  1 /an

Can you see why we needed that a not be zero? Keep in mind that division by zero is not described and if we had let a to be zero we would have gotten division by zero.  Here are a couple of rapid examples for this definition,

5-2  = 1 /52 =  1/25                                             ( -4)-3  = 1/(-4)3 = 1/-64 =-(1/64)

Here are some main properties of integer exponents. Accompanying each of property will be a rapid example to show its use.  We shall be looking at more complex examples after the properties.


Related Discussions:- Integer exponents

Complex numbers, How t determine locus of a goven point

How t determine locus of a goven point

Evaluate of the largest angle, The measures of the angles of a triangle are...

The measures of the angles of a triangle are in the ratio of 3:4:5. Evaluate of the largest angle. a. 75° b. 37.5° c. 45° d. 60° a. The addition of the measures of t

Find the greatest number of 6 digits exactly divisible by 24, Find the grea...

Find the greatest number of 6 digits exactly divisible by 24, 15 and 36. (Ans:999720) Ans: LCM of 24, 15, 36 LCM = 3 × 2 × 2 × 2 × 3 × 5 = 360 Now, the greatest six digit

Relate Fractions and Whole Numbers, Jon ran around a track that was one eig...

Jon ran around a track that was one eighth of a mile long.He ran around the track twenty four times.How many miles did Jon run in all

Seqence and seies, If the M-th term of an Ap is n andn-th term M.find the p...

If the M-th term of an Ap is n andn-th term M.find the p-th term

Fractions, how do i multiply and divide fractions?

how do i multiply and divide fractions?

Pythagorean theorem, when one side of a triangle is 15cm and the bottom of ...

when one side of a triangle is 15cm and the bottom of the triangle is 12cm what would x be rounded to the nearest tenth?

Some definitions of exponential e, Some Definitions of e 1. ...

Some Definitions of e 1. 2.   e is the unique +ve number for which 3. The second one is the significant one for us since that limit is exactly the limit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd