Integer exponents, Mathematics

Assignment Help:

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a bit.

Let's firstly recall the definition of exponentiation along with positive integer exponents.  If a is any number and n is a +ve integer then,

2040_Integer Exponents.png

Thus, for example,

                                                 35=3.3.3.3.3 = 243

We have to also employ this opportunity to remind ourselves regarding parenthesis and conventions which we have in regards to exponentiation & parenthesis. It will be specifically important while dealing with negative numbers.  Assume the following two cases.

                       (-2)4m                 and            -24

These will contain different values once we appraise them.  While performing exponentiation keep in mind that it is only the quantity which is instantly to the left of the exponent which gets the power.

In the initial case there is a parenthesis instantly to the left so this means that everything within the parenthesis gets the power. Thus, in this case we get,

                                       (-2)4 = ( -2) (-2) ( -2) ( -2) = 16

In the second case though, the 2 is instantly to the left of the exponent and thus it is only the 2 that gets the power. The minus sign will stay out in front & will NOT get the power.  In this case we have the following,

                            -24 = - (24 ) = - (2 ⋅ 2 ⋅ 2 ⋅ 2) = - (16) = -16

We put in some added parenthesis to help in illustrate this case. Generally they aren't involved and we would write instead,

                                                         -24  = -2 ⋅ 2 ⋅ 2 ⋅ 2 = -16

The instance of this discussion is to ensure that you pay attention to parenthesis. They are significant and avoiding parenthesis or putting in a set of parenthesis where they don't associate can totally change the answer to a problem.  Be careful.  Also, this warning regarding parenthesis is not just intended for exponents. We will have to be careful with parenthesis during this course.

Now, let's take care of zero exponents & negative integer exponents. In the particular case of zero exponents we have,

                                                                   a0 = 1        provided a ≠ 0

Notice down that it is needed that a not be zero. It is important since 00 is not defined.  Here is a rapid example of this property.

                                                 (-1268)0 = 1

We contain the following definition for -ve exponents.  If a is any non-zero number & n is a +ve integer (yes, positive) then,

                                                  a- n  =  1 /an

Can you see why we needed that a not be zero? Keep in mind that division by zero is not described and if we had let a to be zero we would have gotten division by zero.  Here are a couple of rapid examples for this definition,

5-2  = 1 /52 =  1/25                                             ( -4)-3  = 1/(-4)3 = 1/-64 =-(1/64)

Here are some main properties of integer exponents. Accompanying each of property will be a rapid example to show its use.  We shall be looking at more complex examples after the properties.


Related Discussions:- Integer exponents

Complex analysis test, Can anyone help with my exam. I have 8 questions to ...

Can anyone help with my exam. I have 8 questions to do which is due on 02-14-13

BIOMATH, Ask quHarvesting prevents the population size of a species from at...

Ask quHarvesting prevents the population size of a species from attaining its natural carrying capacity. We can add harvesting to the logistic model by assuming that the per capita

Sketch the graph, Sketch the graph of                          y = ( x -...

Sketch the graph of                          y = ( x -1) 2  - 4 . Solution Now, it is a parabola .Though, we haven't gotten that far yet and thus we will have to select

Math, how do you add all the Y.AND X UP WITH 3

how do you add all the Y.AND X UP WITH 3

Algorithm for division, ALGORITHM FOR DIVISION : If you ask a 10 or 1 1-ye...

ALGORITHM FOR DIVISION : If you ask a 10 or 1 1-year-old child to solve, say, 81 + 9, the chances are that she will correctly do it. But if you ask her to solve, say 72 + 3, t

What was his weight within pounds and ounces, Justin weighed 8 lb 12 oz whi...

Justin weighed 8 lb 12 oz while he was born. At his two-week check-up, he had gained 8 ounces. What was his weight within pounds and ounces? There are 16 ounces within a pound.

Multiplication of two like terms with same signs, Case 1: Suppose we...

Case 1: Suppose we have two terms 7ab and 3ab. When we multiply these two terms, we get 7ab x 3ab = (7 x 3) a 1 + 1 . b 1 + 1  ( Therefore, x m . x n = x m +

Calculus with matrices, Calculus with Matrices There actually isn't a ...

Calculus with Matrices There actually isn't a whole lot to it other than to just ensure that we can deal along with calculus with matrices. Firstly, to this point we've onl

Two train leave show many hours will take before trains pass, Two trains le...

Two trains leave two different cities 1,029 miles apart and head directly toward every other on parallel tracks. If one train is traveling at 45 miles per hour and the other at 53

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd